首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   3篇
化学   78篇
力学   4篇
数学   47篇
物理学   43篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   5篇
  2010年   4篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   11篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2000年   4篇
  1998年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1985年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
  1963年   2篇
  1961年   2篇
  1958年   1篇
  1954年   1篇
  1935年   2篇
  1930年   1篇
  1901年   1篇
  1898年   1篇
  1884年   1篇
排序方式: 共有172条查询结果,搜索用时 312 毫秒
131.
132.
We present a measurement of the total cross section σt in proton-proton collisions at the CERN ISR. The method involves determination of the total interaction rate and machine luminosity. A two-arm scintillation hodoscope observes ~ 90% of the total interaction rate, while a streamer chamber is employed for event topologies missed by the main trigger. An increase of about 10% in σt is observed in the energy range √s = 23.6 to √s = 62.8 GeV/c in agreement with previous experiments.  相似文献   
133.
134.
Approaching protein structural dynamics and protein–protein interactions in the cellular environment is a fundamental challenge. Owing to its absolute sensitivity and to its selectivity to paramagnetic species, site‐directed spin labeling (SDSL) combined with electron paramagnetic resonance (EPR) has the potential to evolve into an efficient method to follow conformational changes in proteins directly inside cells. Until now, the use of nitroxide‐based spin labels for in‐cell studies has represented a major hurdle because of their short persistence in the cellular context. The design and synthesis of the first maleimido‐proxyl‐based spin label (M‐TETPO) resistant towards reduction and being efficient to probe protein dynamics by continuous wave and pulsed EPR is presented. In particular, the extended lifetime of M‐TETPO enabled the study of structural features of a chaperone in the absence and presence of its binding partner at endogenous concentration directly inside cells.  相似文献   
135.
Mass spectrometry plays a major role in the structural elucidation and characterisation of drug candidates and related substances. Accurate mass data allow the mathematical prediction of molecular formula of both precursor and fragment ions. In this paper, a comparison of the accurate mass data obtained for the fragmentation of fluconazole, an antifungal drug, by three different methods is made: electron ionisation (EI) using a magnetic sector instrument; electrospray ionisation (ES) using a Fourier transform ion cyclotron mass spectrometer (FTICRMS); and ES using a quadrupole-time-of-flight mass spectrometer (Q-ToF). It is clear from the data obtained that mass accuracy is not simply a function of instrument resolution. The subtle differences observed between collisionally activated dissociation (CAD) and sustained off-resonance collisionally activated dissociation (SORI-CAD) spectra are explained as a consequence of the excitation process. The advantages and disadvantages of the three techniques are discussed within the context of structural elucidation.  相似文献   
136.
 We have investigated the S0 and S1 electronic states in bacteriorhodopsin using a variety of QM/MM levels. The decomposition of the calculated excitation energies into electronic and electrostatic components shows that the interaction of the chromophore with the protein electric field increases the excitation energy, while polarization effects are negligible. Therefore, the experimentally observed reduction in excitation energy from solution phase to protein environment (the Opsin shift) does not come from the electrostatic interaction with the protein environment, but from either the interaction ofthe chromophore with the solvent or counter ion, or structural effects. Our high-level ONIOM(TD– B3LYP:Amber) calculation predicts the excitation energy within 8 kcal/mol from experiment, the discrepancy probably being caused by the neglect of polarization of the protein environment. In addition, we have shown that the level of optimization is extremely critical for the calculation of accurate excitation energies in bacteriorhodopsin. Received: 13 October 2001 / Accepted: 6 September 2002 / Published online: 3 February 2003 Contribution to the Proceedings of the Symposium on Combined QM/MM Methods at the 222nd National Meeting of the American Chemical Society, 2001 Correspondence to: K. Morokuma e-mail: morokuma@emory.edu  相似文献   
137.
Extensive configuration interaction calculations (up to 1532 spin eigenfunctions) have been carried out on ozone with both minimal and extended bases. Vertical and adiabatic excitation energies to 14 excited states are reported, including seven states with vertical excitation energies less than 4 eV. Our calculations indicate that in addition to the ground state there are four other states of ozone (3B2, 3A2, 1A2 and 3B1) bound with respect to dissociation to ground state O2 and O (by 0.4, 0.3, 0.1 and 0.0 eV, respectively). With such small bonding energies, the current results cannot be said to show definitively (except perhaps for 3B2) these four states to be bound with respect to O2 + O. However, the theoretical evidence is sufficiently strong as to warrant careful experimental studies. Such bound excited electronic states could play important roles in the chemistry of the upper atmosphere and in the chemistry of oxygen discharge systems. One (or more) of these states may be responsible for the short-lived intermediate (‘ozone precursor’) recently observed in oxygen radiolysis.  相似文献   
138.
Abstract— Mutagenic lesions at the thymidine kinase locus (tk) in mouse lymphoma L5178Y (LY) cells treated with red light and either Photofrin (PF) or chloroaluminurn phthalocyanine (AIPc) as the photosensitizer were compared in the relatively photodynamic therapy (PDT)-sensitive strain LY-R16 and the relatively resistant strains LY-S1 and LY-SR1. Southern blot analysis revealed that 92% (36/39) of the PDT-induced thymidine kinase (TK ?/-) mutants of strains LY-R16 and LY-SR1 lost the entire active tk allele. (Strain LY-S1 lacks a known tk polymorphism and has not been analyzed for loss of the active tk allele.) A decrease in galactokinase (GK) activity in the TK?/- mutants has been taken as an indication that the mutagenic lesion extends from the tk gene to the closely linked galactokinase gene (gk). Using PF as the photosensitizer, GK activity was decreased in 45% of the LY-R16 mutants and in 22% of the LY-S1 and LY-SR1 mutants. With photoactivated AIPc, 59% of the TK ?/- mutants of strains LY-S1 and LY-SR1 showed GK inactivation. (LY-R16 mutants were not analyzed because of the low LY-R16 mutant frequency induced by PDT with AlPc.) Thus, many of the TK?/- mutants of LY cells induced by PDT with either PF or AlPc harbor multilocus lesions.  相似文献   
139.
By using the hybrid IMOMM(B3LYP:MM3) method, we examined the binap–RhI‐catalyzed oxidative‐addition and insertion steps of the asymmetric hydrogenation of the enamide 2‐acetylamino‐3‐phenylacrylic acid. We report a path that is energetically more favorable for the major enantiomer than for the minor enantiomer. This path follows the “lock‐and‐key” motif and leads to the major enantiomeric product via an energetically favorable binap–dihydride–RhIII–enamide complex. Our theoretical results are consistent with the mechanism that takes place via RhIII dihydride formation, that is, oxidative addition of H2 followed by enamide insertion.  相似文献   
140.
In this article, we compare and contrast the RASSCF, ONIOM and MMVB electronic structure methods for calculating relaxation paths on potential energy surfaces of the excited states of large molecules, and for locating any resulting conical intersections at which nonadiabatic decay can take place. Each method is treated here as an approximation to CASSCF, which we choose as our reference level of theory, but which becomes prohibitively expensive computationally for large molecules. Both MMVB and ONIOM are hybrid computational methods – combining different levels of theory in an energy plus derivatives calculation at a particular molecular geometry – but they differ fundamentally in that MMVB is a hybrid-atom method, whereas ONIOM is a hybrid-molecule method. We explain this distinction through four representative applications: the photostability of pyracylene (studied with CASSCF, RASSCF, MMVB); large geometry changes in the singlet excited states of triangulene (studied with MMVB); a model for interstitial nickel defects in a synthetic diamond lattice (studied with ONIOM CAS:UFF); and the photochemical [4 + 4] cycloaddition of cyclohexadiene to naphthalene (studied with ONIOM CAS:MMVB). We show that each method is more appropriate for a particular type of photochemical problem. This article is part perspective, part review, and contains new results for three multi-state or photoinduced processes in complex systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号