全文获取类型
收费全文 | 180篇 |
免费 | 3篇 |
专业分类
化学 | 153篇 |
晶体学 | 2篇 |
力学 | 2篇 |
数学 | 8篇 |
物理学 | 18篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 6篇 |
2019年 | 6篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 3篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 6篇 |
2012年 | 13篇 |
2011年 | 20篇 |
2010年 | 11篇 |
2009年 | 5篇 |
2008年 | 21篇 |
2007年 | 15篇 |
2006年 | 13篇 |
2005年 | 12篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 2篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1987年 | 1篇 |
1985年 | 5篇 |
1982年 | 5篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1970年 | 1篇 |
排序方式: 共有183条查询结果,搜索用时 15 毫秒
31.
Tho Duc Khanh Nguyen Stefania Rabasco Alicia A. Lork Andre Du Toit Prof. Andrew G. Ewing 《Angewandte Chemie (International ed. in English)》2023,62(28):e202304098
We used correlative transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to quantify the contents of subvesicular compartments, and to measure the partial release fraction of 13C-dopamine in cellular nanovesicles as a function of size. Three modes of exocytosis comprise full release, kiss-and-run, and partial release. The latter has been subject to scientific debate, despite a growing amount of supporting literature. We tailored culturing procedures to alter vesicle size and definitively show no size correlation with the fraction of partial release. In NanoSIMS images, vesicle content was indicated by the presence of isotopic dopamine, while vesicles which underwent partial release were identified by the presence of an 127I-labelled drug, to which they were exposed during exocytosis allowing entry into the open vesicle prior to its closing again. Demonstration of similar partial release fractions indicates that this mode of exocytosis is predominant across a wide range of vesicle sizes. 相似文献
32.
The reaction of CF2(a3B1) with NO(X2Pi) was theoretically investigated using the B3LYP, MP2, CCSD(T), G2M, CASSCF, and CASPT2 quantum chemical methods with various basis sets including 6-31G(d), 6-311G(d), 6-311+G(3df), cc-pVDZ, and cc-pVTZ. In agreement with the experimental kinetic data, the CF2(a3B1)+NO(X2Pi) reaction is found to proceed via a fast, barrier-free combination. This process, occurring on the doublet potential energy surface, leads to the electronically excited adduct F2C-NO(22A'), which readily undergoes a surface hopping to the 12A' electronic surface, with a Landau-Zener transition probability estimated to be close to 90% per C-N vibration. The metastable adduct F2C-NO(12A') can then either spontaneously decompose into CF2(X1A1)+NO(X2Pi) in a direct chemical quenching mechanism or relax to its ground-state equilibrium structure F2CNO(X2A'). The product distribution resulting from the latter, chemically activated intermediate was evaluated by solution of the master equation (ME), under different reaction conditions, using the exact stochastic simulation method; microcanonical rate constants were computed using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, based on the potential energy surfaces (PESs) constructed using both G2M and CASPT2 methods. The RRKM/ME analysis reveals that the hot F2CNO(X2A') rapidly fragments almost exclusively to the same products as above, CF2(X1A1)+NO(X2Pi), which amounts to an indirect chemical quenching mechanism. The reaction on the quartet PES is unlikely to be significant except at very high temperatures. The high crossing probability (up to 90%) between the two "avoided" doublet PESs points out the inherent difficulty in treating chemically activated reactions with fast-moving nuclei within the Born-Oppenheimer approximation. 相似文献
33.
We investigate the molecular and electronic structure and thermochemical properties of the cationic boron clusters B n + with n?=?2–20, using both MO and DFT methods. Several functionals are used along with the MP2, G3, G3B3, G4, and CCSD(T)/CBS methods. The latter is the high accuracy reference. While the TPSS, TPSSh, PW91, PB86, and PBE functionals show results comparable to high-accuracy MO methods, both BLYP and B3LYP functionals are not accurate enough for three-dimensional (3D) structures. A negligible difference is observed between the B3LYP, MP2, and CCSD(T) geometries. A transition between 2D and 3D structures occurs for this series at the B16 +–B19 + sizes. While smaller clusters B n + with n?≤?15 are planar or quasi-planar, a structural competition takes place in the intermediate sizes of B 16–19 + . The B20 + cation has a 3D tubular shape. The standard heats of formation are determined and used to evaluate the cluster stability. The average binding energy tends to increase with increasing size toward a limit. All closed-shell species B n + has an aromatic character, but an enhanced stability is found for B5 + and B13 + whose aromaticity and electron delocalization are analyzed using the LOL technique. 相似文献
34.
Innovations in chemometrics are required for studies of chemical systems which are governed by nonlinear responses to chemical parameters and/or interdependencies (coupling) among these parameters. Conventional and linear multivariate models have limited use for quantitative and qualitative investigations of such systems because they are based on the assumption that the measured data are simple superpositions of several input parameters. ‘Predictor Surfaces’ were developed for studies of more chemically complex systems such as biological materials in order to ensure accurate quantitative analyses and proper chemical modeling for in-depth studies of such systems. Predictor Surfaces are based on approximating nonlinear multivariate model functions by multivariate Taylor expansions which inherently introduce the required coupled and higher-order predictor variables. 相似文献
35.
Chen X Syrstad EA Nguyen MT Gerbaux P Turecek F 《The journal of physical chemistry. A》2005,109(36):8121-8132
The elusive hydrogen atom adduct to the N-1 position in adenine, which is thought to be the initial intermediate of chemical damage, was specifically generated in the gas phase and characterized by neutralization-reionization mass spectrometry. The N-1 adduct, 1,2-dihydroaden-2-yl radical (1), was generated by femtosecond electron transfer to N-1-protonated adenine that was selectively produced by electrospray ionization of adenine in aqueous-methanol solution. Radical 1 is an intrinsically stable species in the gas phase that undergoes specific loss of the N-1-hydrogen atom to form adenine, but does not isomerize to the more stable C-2 adduct, 1,2-dihydroaden-1-yl radical (5). Radicals 1 that are formed in the fifth and higher electronically excited states of DeltaE > or = 2.5 eV can also undergo ring-cleavage dissociations resulting in expulsion of HCN. The relative stabilities, dissociation, and transition state energies for several hydrogen atom adducts to adenine have been established computationally at highly correlated levels of theory. Transition state theory calculations of 298 K rate constants in the gas phase, including quantum tunnel corrections, indicate the branching ratios for H-atom additions to C-8, C-2, N-3, N-1, and N-7 positions in adenine as 0.68, 0.20, 0.08, 0.03, and 0.01, respectively. The relative free energies of adenine radicals in aqueous solution point to the C-8 adduct as the most stable tautomer, which is predicted to be the predominating (>99.9%) product at thermal equilibrium in solution at 298 K. 相似文献
36.
Carl SA Nguyen HM Elsamra RM Nguyen MT Peeters J 《The Journal of chemical physics》2005,122(11):114307
The rate coefficient of the gas-phase reaction C(2)H + H(2)O-->products has been experimentally determined over the temperature range 500-825 K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C(2)H) were generated by pulsed 193 nm photolysis of C(2)H(2) in the presence of H(2)O vapor and buffer gas N(2) at 15 Torr. The relative concentration of C(2)H radicals was monitored as a function of time using a CH* chemiluminescence method. The rate constant determinations for C(2)H + H(2)O were k(1)(550 K) = (2.3 +/- 1.3) x 10(-13) cm(3) s(-1), k(1)(770 K) =(7.2 +/- 1.4) x 10(-13) cm(3) s(-1), and k(1)(825 K) = (7.7 +/- 1.5) x 10(-13) cm(3) s(-1). The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C(2)H(3)O in its doublet electronic ground state has been investigated using density functional theory B3LYP6-311 + + G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311 + + G(3df,2p) basis set [(U)CCSD(T)6-311 + + G(3df,2p)] and using UCCSD(T)6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C(2)H(2)+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)6-311 + + G(3df,2p)(U)CCSD(T)6-311 + + G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlof and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero-point energy-corrected potential energy barriers of 17 kJ mol(-1) and 15 kJ mol(-1), respectively. Transition-state theory rate constant calculations, based on the UCCSD(T) and CASPT2/CASSCF computations that also include H-atom tunneling and a hindered internal rotation, are in perfect agreement with the experimental values. Considering both our experimental and theoretical determinations, the rate constant can best be expressed, in modified Arrhenius form as k(1)(T) = (2.2 +/- 0.1) x 10(-21)T(3.05) exp[-(376 +/- 100)T] cm(3) s(-1) for the range 300-2000 K. Thus, at temperatures above 1500 K, reaction of C(2)H with H(2)O is predicted to be one of the dominant C(2)H reactions in hydrocarbon combustion. 相似文献
37.
Izzati Husna Ismail Kamarulazizi Ibrahim Melati Khairuddean Tho Seiw Yen Yeap Choon Wan 《Journal of Sol-Gel Science and Technology》2014,72(2):369-374
In this study, zinc oxide (ZnO) nanorod were successfully prepared at different growth times (15, 30 and 60 min) using the microwave irradiation method. The ZnO nanorods were simply synthesized at a low temperature (90 °C) with low power microwave assisted heating (about 100 W) and a subsequent ageing process. The synthesized nanorod were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and Ultraviolet–Visible spectroscopy (UV–Vis). The FESEM images showed nanorods with diameter ranging between 50 and 150 nm, and length of 150–550 nm. The XRD results indicate that ZnO nanorods of different time of growth exhibits pure wurtzite structure with lattice parameters of 3.2568 and 5.2125 Å. UV–Vis characterization showed that energy gap decreases with increase in time. The result also shows that growth of ZnO at 60 min produces an energy band gap of 3.15 eV. In general, the results of the study confirm that the microwave irradiation method is a promising low temperature, cheap and fast method for the production of ZnO nanostructures. 相似文献
38.
39.
Nockemann P Thijs B Parac-Vogt TN Van Hecke K Van Meervelt L Tinant B Hartenbach I Schleid T Ngan VT Nguyen MT Binnemans K 《Inorganic chemistry》2008,47(21):9987-9999
Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined. 相似文献
40.
Cavalcanti LP Tho I Konovalov O Fossheim S Brandl M 《Colloids and surfaces. B, Biointerfaces》2011,85(2):1107-160
The mechanical properties of liposome membranes are strongly dependent on type and ratio of lipid compounds, which can have important role in drug targeting and release processes when liposome is used as drug carrier. In this work we have used Brewster's angle microscopy to monitor the lateral compression process of lipid monolayers containing as helper lipids either distearoyl phosphatidylethanolamine (DSPE) or dioleoyl phophatidylethanolamine (DOPE) molecules on the Langmuir trough. The compressibility coefficient was determined for lipid blend monolayers containing the helper lipids above, cholesterol, distearoyl phosphatidylcholine (DSPC) and pegylated-DSPE at room temperature. Two variables, the cholesterol fraction and the ratio ρ between the helper lipid (either DSPE or DOPE) and the reference lipid DSPC, were studied by multivariate analysis to evaluate their impact on the compressibility coefficient of the monolayers. The cholesterol level was found to be the most significant variable for DSPE blends while the ratio ρ was the most significant one for DOPE blend monolayers. It was also found that these two variables can exhibit positive interaction and the same compressibility value can be obtained with different blend compositions. 相似文献