首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   25篇
化学   626篇
晶体学   9篇
力学   8篇
数学   35篇
物理学   153篇
  2023年   4篇
  2022年   3篇
  2021年   17篇
  2020年   15篇
  2019年   5篇
  2018年   9篇
  2016年   11篇
  2015年   16篇
  2014年   10篇
  2013年   30篇
  2012年   35篇
  2011年   63篇
  2010年   33篇
  2009年   31篇
  2008年   49篇
  2007年   60篇
  2006年   55篇
  2005年   62篇
  2004年   44篇
  2003年   32篇
  2002年   26篇
  2001年   20篇
  2000年   17篇
  1999年   6篇
  1997年   6篇
  1996年   14篇
  1995年   8篇
  1993年   9篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   2篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   7篇
  1975年   15篇
  1974年   5篇
  1973年   9篇
  1972年   2篇
  1971年   2篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
171.
The influence of the ratio between poor and good solvent on the stability and dynamics of supramolecular polymers is studied via a combination of experiments and simulations. Step-wise addition of good solvent to supramolecular polymers assembled via a cooperative (nucleated) growth mechanism results in complete disassembly at a critical good/poor solvent ratio. In contrast, gradual disassembly profiles upon addition of good solvent are observed for isodesmic (non-nucleated) systems. Due to the weak association of good solvent molecules to monomers, the solvent-dependent aggregate stability can be described by a linear free-energy relationship. With respect to dynamics, the depolymerization of π-conjugated oligo(p-phenylene vinylene) (OPV) assemblies in methylcyclohexane (MCH) upon addition of chloroform as a good solvent is shown to proceed with a minimum rate around a critical chloroform/MCH solvent ratio. This minimum disassembly rate bears an intriguing resemblance to phenomena observed in protein unfolding, where minimum rates are observed at the thermodynamic midpoint of a protein denaturation experiment. A kinetic nucleation-elongation model in which the rate constants explicitly depend on the good solvent fraction is developed to rationalize the kinetic traces and further extend the insights by simulation. It is shown that cooperativity, i.e., the nucleation of new aggregates, plays a key role in the minimum polymerization and depolymerization rate at the critical solvent composition. Importantly, this shows that the mixing protocol by which one-dimensional aggregates are prepared via solution-based processing using good/poor solvent mixtures is of major influence on self-assembly dynamics.  相似文献   
172.
The self‐assembly of two enantiomerically pure hexa(oligo (p‐phenylene vinylene))‐substituted benzenes having 24 stereocenters was studied in pure methylcyclohexane (MCH) and in a mixture of MCH/toluene (4:1). Irrespective of the solvent a cooperative supramolecular polymerization mechanism was determined for these star‐shaped molecules by using temperature‐dependent CD and UV/Vis spectroscopy. Quite remarkably, a transition from one helical supramolecular state (A) to a second more thermodynamically stable supramolecular helical assembly (B) was observed. The rate of the A→B transition was strongly dependent on the nature of the solvent; being faster in the solvent mixture than in pure MCH. By using size exclusion chromatography we could relate the increased rate to a decreased stability of the supramolecular A state in the solvent mixture. Next, we mixed the two enantiomerically pure hexa‐substituted benzene derivatives in a so‐called majority‐rules experiment, which lead to the anitcipated chiral amplification in the A state. More importantly it appeared that the A→B transition was significantly hampered in these mixed systems. Furthermore, the absence of chiral amplification in the B state revealed the formation of separated enantiomerically pure assemblies. Therefore, by using a wide variety of spectroscopic and chromatographic techniques we determined the influence of solvent and enantiomeric purity on the transition between different supramolecular states.  相似文献   
173.
174.
The monomers 2‐methyl‐2‐oxazine (MeOZI), 2‐ethyl‐2‐oxazine (EtOZI), and 2‐n‐propyl‐2‐oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring‐opening polymerization (CROP) under microwave‐assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (TCP) are lower than for poly(2‐oxazoline)s with similar side chains. However, comparison of poly(2‐oxazine) and poly(2‐oxazoline)s isomers reveals that poly(2‐oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain. In conclusion, variations of both the side chains and the main chains of the poly(cyclic imino ether)s resulted in a series of distinct homopolymers with tunable TCP.  相似文献   
175.
The application of the mapping method in finite element modeling is extended to quantitatively compare mixing in different twin‐screw extruder layouts. The mapping method provides volumetric quantities, which are crucial for the analysis and optimization of mixing based on the tracking of particles in the velocity field. A new approach to the mapping method is developed to analyze mixing in complex, dynamic open geometries. Several screw configurations and different types of conveying screws are compared, changing the pitch and gap widths. The volume‐weighted intensity of segregation is used as a mixing measure.

  相似文献   

176.
A novel, fast, and simple synthetic procedure for polycarbamate/urea dendrimers, based on an AB–CD2 coupling strategy, is presented. The reactivity difference of the two isocyanate functionalities of the AB building block allows the construction of these dendrimers without the necessity of activation or deprotection steps. This makes it possible to construct dendrimers within 2–3 days, even the largest dendrimers. The resulting dendrimers could be fully characterized by 13C NMR, IR spectroscopy, and mass spectrometry. The synthetic strategy necessitates only techniques such as stirring, heating, and accurate dosing, and there is no workup required for the purification of the compounds. On account of a wide variety of polyols, amines, and aminoalcohols, this new procedure is not limited to the synthetic strategy followed but allows the incorporation of a large variety of functional molecules in the core, in the branching units, or at the end groups. The method is even applicable when organometallic species are incorporated into the dendritic structure, thereby showing its versatility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3112–3120, 2001  相似文献   
177.
The morphology evolution of two systems of partially immiscible polymers, differing in miscibility, is investigated by means of rheological experiments and optical microscopy. For each system, two concentrations, 10% and 20%, are used. For immiscible systems, a hysteresis zone, defined by coalescence and breakup, exists where the average drop radius is not a unique function of the shear rate. We investigate whether the findings also apply to partially immiscible polymers. The average radii at different shear rates, measured with rheology, are compared to model predictions. The hysteresis zone, if present, is indeed affected by the polymeric system, the concentration and the flow history applied. Coalescence evolution is measured for three different step-downs in shear rate. For both 10% systems, the resulting average radii show a rather high scattering and do not match the theoretical predictions. For the 20% concentrations, the average experimental drop sizes seem independent of the magnitude of the step-down, at least during a certain period of time. Thereafter, it experiences a sudden, in the time scale of the experiments unbounded, increase in size that is more pronounced for the higher step-downs. Deviations of the experimental data from theoretical predictions are attributed to the partially immiscible character of the systems, yielding enhanced coalescence which, in turn, can induce confinement effects.  相似文献   
178.
We describe the mechanochemical regulation of a reaction that would otherwise be considered to be photochemical, via a simple process that yields nm spatial resolution. An atomic force microscope (AFM) probe is used to remove photocleavable nitrophenyl protecting groups from alkylsilane films at loads too small for mechanical wear, thus enabling nanoscale differentiation of chemical reactivity. Feature sizes of 20–50 nm are achieved repeatably and controllably at writing rates up to 1 mm s−1. Line widths vary monotonically with the load up to 2000 nN. To demonstrate the capacity for sophisticated surface functionalisation provided by this strategy, we show that functionalization of nanolines with nitrilo triacetic acid enables site-specific immobilization of histidine-tagged green fluorescent protein. Density functional theory (DFT) calculations reveal that the key energetic barrier in the photo-deprotection reaction of the nitrophenyl protecting group is excitation of a π–π* transition (3.1 eV) via an intramolecular charge-transfer mechanism. Under modest loading, compression of the adsorbate layer causes a decrease in the N–N separation, with the effect that this energy barrier can be reduced to as little as 1.2 eV. Thus, deprotection becomes possible via either absorption of visible photons or phononic excitation transfer, facilitating fast nanolithography with a very small feature size.

Photolithography without optics: compression of nitrophenyl protecting groups under an atomic force microscope probe modifies their electronic structure and reduces the energy barrier to deprotection, enabling nanolithography without UV light.  相似文献   
179.
Precise oligomeric materials constitute a growing area of research with implications for various applications as well as fundamental studies. Notably, this field of science which can be termed macro-organic chemistry, draws inspiration from both traditional polymer chemistry and organic synthesis, combining the molecular precision of organic chemistry with the materials properties of macromolecules. Discrete oligomers enable access to unprecedented materials properties, for example, in self-assembled structures, crystallization, or optical properties. The degree of control over oligomer structures resembles many biological systems and enables the design of materials with tailored properties and the development of fundamental structure–property relationships. This Review highlights recent developments in macro-organic chemistry from synthetic concepts to materials properties, with a focus on self-assembly and molecular recognition. Finally, an outlook for future research directions is provided.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号