首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2238篇
  免费   108篇
  国内免费   14篇
化学   1584篇
晶体学   20篇
力学   89篇
数学   349篇
物理学   318篇
  2023年   22篇
  2022年   47篇
  2021年   53篇
  2020年   63篇
  2019年   50篇
  2018年   38篇
  2017年   29篇
  2016年   78篇
  2015年   58篇
  2014年   82篇
  2013年   145篇
  2012年   155篇
  2011年   192篇
  2010年   83篇
  2009年   92篇
  2008年   147篇
  2007年   149篇
  2006年   124篇
  2005年   126篇
  2004年   106篇
  2003年   103篇
  2002年   110篇
  2001年   25篇
  2000年   21篇
  1999年   23篇
  1998年   29篇
  1997年   27篇
  1996年   26篇
  1995年   15篇
  1994年   13篇
  1993年   12篇
  1992年   12篇
  1991年   9篇
  1990年   3篇
  1989年   9篇
  1988年   6篇
  1987年   4篇
  1985年   13篇
  1984年   7篇
  1983年   4篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1974年   2篇
  1904年   2篇
  1887年   2篇
排序方式: 共有2360条查询结果,搜索用时 765 毫秒
991.
We report herein the synthesis of substituted 2-(6-nitrobenzo[1,3]dioxol-5-yl)-1- aryl ethanols and 2-(6-nitrobenzo[1,3]dioxol-5-yl)-propionic acid ethyl esters from the reaction of 5-chloromethyl-6-nitrobenzo[1,3]dioxole with various aromatic carbonyl and alpha- carbonyl ester derivatives using the tetrakis(dimethylamino)ethylene (TDAE) methodology.  相似文献   
992.
A field evaluation of a novel nitrate-ion selective electrode (ISE) was undertaken by continuous immersion over a period of 5 months in agricultural drainage weirs. The nitrate sensor N,N,N-triallyl leucine betaine was covalently attached to polystyrene-block-polybutadiene-block-polystyrene (SBS) using a free radical initiated co-polymerisation, to produce a rubbery membrane which was incorporated into a commercially available electrode body. A measurement unit was constructed comprising the nitrate-ISEs, a reference electrode and a temperature probe connected through a pre-amplifier to a data-logger and battery supply. A temperature correction algorithm was developed to accomodate the temperature changes encountered in the drainage weirs. The nitrate results obtained with the ISEs at hourly intervals compared very favourably (R2 = 0.99) with those obtained with laboratory automated chemical determinations made on contemporaneous samples of drainage in a concentration range 0.47-16 ppm nitrate-N. The ISEs did not require re-calibration and no deterioration in performance or fouling of the membrane surface was observed over four months of deployment.  相似文献   
993.
While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, glum, hardly exceeds 10−2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric (μe) and magnetic (μm) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high glum values, i.e. up to 3–4 × 10−2. Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising gEl of around 8 × 10−3. These results bring about further molecular design guidelines to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures.

A CPL intensity of up to 3 × 10−2 is achieved in π-extended 6-helicene derivatives, owing to an intense helicene-mediated exciton coupling. Corresponding top-emission CP-OLEDs afforded a promising gEl of around 8 × 10−3.

The design of chiral emitters displaying intense circularly polarized luminescence (CPL) has attracted significant interest, thanks to the potential of CP light in a diverse range of applications going from chiroptoelectronics (organic light-emitting diodes (OLEDs), optical information processing, etc.) to bio-imaging and chiral sensing.1 Recently, designing OLEDs with CP electroluminescence (CP-OLEDs) has emerged as an interesting approach to improve high-resolution display performance. Namely, using unpolarised OLEDs, up to 50% of the emitted light can be lost due to the use of antiglare polarized filters.2 In CP-OLEDs, the electro-generated light can pass these filters with less attenuation owing to its circular polarization and thus lead to an increase of the image brightness with lower power consumption.3 To develop CP-OLED devices, the main approach relies on the doping of the device''s emitting layer by a CPL emitter, which should ensure simultaneously high exciton conversion and a high degree of circular polarization. The harvesting of both singlet and triplet excitons has been successfully addressed using either chiral phosphorescent materials or thermally activated delayed fluorescence (CP-TADF) emitters with device efficiencies of up to 32%.4 However, the intensity of circularly polarized electroluminescence (CPEL), evaluated by the corresponding dissymmetry factor gEl, remains inefficient and typically falls within the range of 10−3 with limited examples reaching gEl > 10−2 based on polymeric materials and lanthanide complexes.5 For CP-OLEDs using a molecular chiral emissive dopant, gEl, defined as the ratio between the intensity difference of left- and right-CPEL, and the total generated electroluminescence, 2(ElL − ElR)/(ElL + ElR), can be generally related to the luminescence dissymmetry factor glum measured in diluted solution.2 Accordingly, it is of crucial importance to design luminescent molecules with high glum values,3,28a–d,29 in order to reach strong CP electro-luminescence when going to practical devices. However, structural and electronic factors that govern the CPL of chiral compounds are still poorly understood even if a few studies have recently tried to rationalize and establish molecular guidelines to obtain high glum values.6Our team has contributed to the research in this area by developing extended π-helical molecular architectures resulting from the association of carbo[6]helicene and achiral dyes,7 which afforded enhanced chiroptical properties, with notably a glum up to 10−2, owing to an uncommon chiral exciton coupling process mediated by the chiral helicenic unit.8 In addition, we also described an unusual solvent effect on the intensity of CPL of π-helical push–pull helicene–naphthalimide derivatives,7b which showed a decrease of glum from 10−2 to 10−3 upon increasing the polarity of solvent.7b This solvatochromism effect was shown to be related to a symmetry breaking of the chiral excited state before emission,9 which modifies the relative intensity of the magnetic (μm) and electric (μe) dipole transition moments, and the angle, θ, between them (Fig. 1), ultimately impacting glum. The latter is well approximated as 4|m|cos θ/(|μ|) for an electric dipole-allowed transition.10Open in a separate windowFig. 1Chemical structures of “push–pull” 2,15-diethynylhexahelicene-based emitters with their polarized luminescence characteristics including their calculated electric and magnetic transition dipole moments and the angle between them corresponding to the S1 → S0 transition.While these results highlight interesting aspects regarding the key parameters influencing the CPL of organic emitters, this type of “helical push–pull design” remains limited to only one example, which render the systematic rationalization of these findings difficult. Accordingly, we decided to develop a complete family of new chiral push–pull compounds to explore the structural and electronic impact of the grafted substituents on the helical π-conjugated system. In addition, we went a step further and incorporated the designed chiral emitter into proof-of-concept CP-OLEDs using a top-emission architecture,11 which remains scarcely explored for CP-light generation despite its considerable potential for micro-display applications. To the best of our knowledge, only one example of such type of electroluminescent device has been reported, using a CP-TADF emitter, affording a modest gEl of 10−3.11aHerein, we report the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on chiral carbo[6]helicene, functionalized by either electron donor or acceptor units. Interestingly, the chiral π-conjugated system of the helicene may act as either an electron acceptor or a donor, depending on the nature of the attached substituents, thereby impacting the chiroptical properties, notably the resulting CPL. By optimizing the chiral exciton coupling process through the modulation of the magnitude and relative orientation of the electric (μ) and magnetic (m) dipoles, the chiroptical properties of classical carbo[6]helicene-based emitters can be dramatically enhanced and reach high glum values at the molecular level, i.e. up to 3–4 × 10−2. Experimental and theoretical investigations revealed that the mutual orientation of the electric and magnetic dipoles in the excited-state is a crucial parameter and is optimal when the substituents attached to the helicene core possess a rather weak electron withdrawing or donating ability. Finally, proof of concept top-emission CP-OLEDs were fabricated through vapor deposition of π-helical push–pull derivatives and afforded a gEl of around 8 × 10−3, which represents a significant improvement for the polarization of electroluminescence emitted using this device architecture.  相似文献   
994.
The influence of microwave heating on the stability of immobilized Candida antarctica lipase B was studied at 100 degrees in an organic medium. The microwave radiation was carried out before enzymatic reaction (storage conditions) or during the enzymatic catalysis (use conditions). In both cases, enzymatic stability was higher under microwave heating than under conventional thermal heating, in strictly identical operating conditions. Furthermore, the gain of enzymatic stability under microwave heating appears to be higher in a more polar solvent, which interacts strongly with the microwave field. Our results suggest that microwave radiation has an effect, not related to temperature, on the process of enzymatic inactivation.  相似文献   
995.
Random polystyrene copolymers grafted with complementary recognition elements were combined in chloroform producing vesicular aggregates, that is, recognition-induced polymersomes (RIPs). Reflection interference contrast microscopy (RICM) in solution, coupled with optical microscopy (OM) and atomic force microscopy (AFM) on solid substrates, were used to determine the wall thickness of the RIPs. Rather than a conventional mono- or bilayer structure (approximately 10 or approximately 20 nm, respectively) the RIP membrane was 43+/-7 nm thick. Structural arrangement of the polymer chains on the RIP wall were characterized by using angle-resolved X-ray photoelectron spectroscopy (AR-XPS). The interior portion of the vesicle membrane was found to be more polar, containing more recognition units, than the exterior part. This gradient suggests that a rapid self-sorting of polymers takes place during the formation of RIPs, providing the likely mechanism for vesicle self-assembly.  相似文献   
996.
This contribution is dedicated to a short overview on the utilization of fluorine for the preparation of crystalline microporous frameworks including different families of solids: zeolites, metal phosphates and metal-organic frameworks (MOF-type). Beside the silicates compounds, this presentation is focused on the different types of fluorinated aluminum or gallium phosphates hydrothermally obtained in the presence of organic structure-directing agent or templates. The structural features of aluminum fluorides synthesized with amines are also detailed as well as the influence of fluorine in the synthesis of the metal-organic frameworks involving trivalent metals. The role of fluorine is described for the hydrothermal synthesis of the different classes of materials. Fluorine is known for playing the role of mineralizing agent and favors the formation of well crystalline phases. The use of HF modifies the pH of the reaction, which allows for the insertion of additional metallic cations on the mineral network. From the structural point of view, fluoride anions can be located within small cavities of the 3D framework and interactions with metals T (T = Si, Al, Ga, …) are often observed, resulting in the coordination change (from tetrahedral unit TO4 to trigonal bipyramid TO4F or octahedron TO4F2). Several configurations are found for fluorine and it seems to favor the stabilization of the specific cubane-like building unit (D4R), in which it is trapped, or participates to the coordination sphere of the metal atoms with bridging or terminal bondings. In general, new three-dimensional topologies with extra-large pores are obtained. The synthesis of purely aluminum fluorides with structure-directing agent is considered but only molecular or low-dimensional structures (chain-like or layered) compounds have been described. Fluorine is also used as a mineralizing agent for the preparation of well crystalline porous aluminum or chromium carboxylates and it was observed to partly substitute the aquo ligands in the giant pore of the compound MIL-100.  相似文献   
997.
Isothermal titration calorimetry and X-ray crystallography have been used to determine the structural and thermodynamic consequences associated with constraining the pTyr residue of the pYEEI ligand for the Src Homology 2 domain of the Src kinase (Src SH2 domain). The conformationally constrained peptide mimics that were used are cyclopropane-derived isosteres whereby a cyclopropane ring substitutes to the N-Calpha-Cbeta atoms of the phosphotyrosine. Comparison of the thermodynamic data for the binding of the conformationally constrained peptide mimics relative to their equivalent flexible analogues as well as a native tetrapeptide revealed an entropic advantage of 5-9 cal mol(-1) K(-1) for the binding of the conformationally constrained ligands. However, an unexpected drop in enthalpy for the binding of the conformationally constrained ligands relative to their flexible analogues was also observed. To evaluate whether these differences reflected conformational variations in peptide binding modes, we have determined the crystal structure of a complex of the Src SH2 domain bound to one of the conformationally constrained peptide mimics. Comparison of this new structure with that of the Src SH2 domain bound to a natural 11-mer peptide (Waksman et al. Cell 1993, 72, 779-790) revealed only very small differences. Hence, cyclopropane-derived peptides are excellent mimics of the bound state of their flexible analogues. However, a rigorous analysis of the structures and of the surface areas at the binding interface, and subsequent computational derivation of the energetic binding parameters, failed to predict the observed differences between the binding thermodynamics of the rigidified and flexible ligands, suggesting that the drop in enthalpy observed with the conformationally constrained peptide mimic arises from sources other than changes in buried surface areas, though the exact origin of the differences remains unclear.  相似文献   
998.
A high-yielding synthesis of methyl fluoro(diethoxyphosphono)dithioacetate starting from its difluorinated analogue is reported. Fluorophosphonothioacetamides and -methylthiazolines, prepared from this new dithioester, have been successfully transformed into highly functionalized fluoroalkenes. Good stereoselectivity in favor of the E isomer was observed from the fluorophosphonomethylthiazolines. The potential of these new fluorinated olefinating reagents for the synthesis of modified peptides and glycosides is also disclosed.  相似文献   
999.
The synthesis, single crystal structure determination, and electronic structure of Nb10Cl16O7, the first Nb6 oxychloride stabilized without countercation, are reported in this work. The crystal structure is very original since it consists of layers built up from both Nb6 octahedral clusters and Nb2 pairs. The Nb6Oi6Cli6Cla6 and Nb2(mu2-Cl)2Cl4O4 units form [Nb6Cli6Oi4O(i-i)(2/2)Cl(a-a)(4/2)Cla2]infinity infinite chains and [(Nb2(mu2-Cl)2O(2/2)Cl(4/2)O2)2]infinity double chains, respectively, that are interconnected by shared oxygen and chlorine ligands leading to layers. The cohesion of the three-dimensional structure (3D) is ensured by van der Waals contacts between layers that are randomly stacked along the [011] direction. Structural correlations between Nb10Cl16O7 and related Nb6 cluster oxyhalides, as well as NbOCl2 and NbCl4 containing Nb2 pairs, are discussed. DFT results show that among the 20 valence electrons involved in the metal-metal bonding states, 14 electrons belong to the octahedral Nb6Cli6Oi6Cla6 unit whereas the 6 others (i.e., 1.5 per Nb atom) participate in the bonding in the distorted [(Nb2(mu2-Cl)2O(2/2)Cl(4/2)O2)2]infinity double chains.  相似文献   
1000.
N,N-Diphenyl-α-haloacetamides undergo Darzens condensations with aldehydes under heterogeneous reaction conditions in the presence of a metal hydroxide base. By appropriate choice of solvent, base and halide, very high diastereoselectivities favouring formation of the cis- or trans-epoxide can be obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号