首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6562篇
  免费   367篇
  国内免费   181篇
化学   4072篇
晶体学   71篇
力学   262篇
综合类   12篇
数学   1377篇
物理学   1316篇
  2023年   60篇
  2022年   142篇
  2021年   193篇
  2020年   187篇
  2019年   229篇
  2018年   226篇
  2017年   202篇
  2016年   283篇
  2015年   237篇
  2014年   310篇
  2013年   488篇
  2012年   467篇
  2011年   515篇
  2010年   275篇
  2009年   306篇
  2008年   352篇
  2007年   288篇
  2006年   253篇
  2005年   211篇
  2004年   206篇
  2003年   162篇
  2002年   188篇
  2001年   152篇
  2000年   101篇
  1999年   85篇
  1998年   53篇
  1997年   53篇
  1996年   68篇
  1995年   51篇
  1994年   51篇
  1993年   55篇
  1992年   41篇
  1991年   45篇
  1990年   37篇
  1989年   28篇
  1988年   31篇
  1987年   38篇
  1986年   44篇
  1985年   41篇
  1984年   31篇
  1983年   27篇
  1982年   35篇
  1981年   35篇
  1980年   27篇
  1979年   39篇
  1978年   32篇
  1977年   22篇
  1976年   25篇
  1975年   22篇
  1974年   14篇
排序方式: 共有7110条查询结果,搜索用时 15 毫秒
61.
The study of specifically 13C-labelled precursors sheds further light on the gas-phase chemistry of allyl and 2-propenyl cations. It is demonstrated that both species are formed from allyl and 2-propenyl bromide upon 70 eV electron impact ionization without skeletal reorganization. Gas-phase derivatization of the [C3 H5]+ ions with benzene facilitates, as suggested and observed earlier, the distinction of the two isomers using collision-induced dissociation of the Wheland complexes (or isomers thereof). The 13C labelling data clearly demonstrate that 64% of allyl cations survive the derivatization while 36% isomerize to 2-phenylpropyl cations; the latter are also formed via the reaction of 2-propenyl cation with benzene, protonation of α-methylstyrene and water loss from protonated 2-phenyl-2-propanol, respectively. Unimolecular loss of C2H4 from protonated allylbenzene proceeds via two competing reaction channels: one involves heterolysis of 1-phenylpropyl cations (~30%); the major pathway (~70%), however, involves decomposition via propylene benzenium ions.  相似文献   
62.
We have investigated the basicity of phosphinine (C5H5P, phosphabenzene) in reevaluating its proton affinity (PA) and gas-phase basicity (GB) and the pK(a) value of its protonated form. As a necessary step, we have first determined its gas-phase proton affinity. Using both mass spectrometric and quantum chemical methods, we have obtained the values PA(C5H5P) = 195.8 +/- 1.0 kcal mol(-1) and GB(298)(C5H5P) = 188.1 +/- 1.0 kcal mol(-1), in good agreement with previous results. We then derived a value of pK(a)(C5H6P+) = -16.1 +/- 1.0 in aqueous solution using three different approaches: the latter markedly differs from the currently available value of -10. The reason for such a discrepancy in the pK(a) of protonated phosphinine in solution is discussed. In the theoretical determination of PAs, evaluation of the basis set superposition error (BSSE) showed that this effect is quite small, being 0.1-0.2 kcal mol(-1) for phosphinine, when a density functional theory (DFT) method in conjunction with a large basis set were used.  相似文献   
63.
Plasma chemically modified carbon nanofibers were characterized by X-ray photoelectron spectroscopy with regard to the content of carbon, oxygen, and nitrogen and the contribution of carboxylic groups or ester, carbonyl and hydroxylic groups or ether on the surface. Unfortunately, X-ray photoelectron spectroscopy only provides an average value of the first 10 to 15 molecular layers. For comparison, depth profiles were measured and wet chemical methods were applied to estimate the thickness of the functionalized layer and the distribution of oxygen-containing functional groups within the near-surface layers. The results indicate that the fiber surface is covered by a monomolecular oxygen-containing layer and that plasma treatment allows a complete oxygen functionalization of the uppermost surface layer. The best conditions for plasma treatment found within the set of parameters applied to generate complete functionalization are: plasma gas O(2)/Ar ratio 1:1, gas pressure 1-1.5 hPa, plasma power 80 W, treatment time >or= 5 min. Additionally, three quick and easy methods are presented to estimate the efficiency of plasma treatment with regard to surface functionalization: pyrolysis, contact angle measurements, and light permeability measurements of aqueous carbon nanofiber suspensions.  相似文献   
64.
Isoniazid (INH) is easily oxidized with manganese(III) pyrophosphate, a chemical model of the KatG protein involved in activation of INH inside the bacteria Mycobacterium tuberculosis. Performed in the presence of NAD(+), this oxidation generates a family of isomeric INH-NAD(H) adducts, which have been shown to be effective inhibitors of InhA, an enzyme essential in mycolic acid biosynthesis. In this work, we fully characterized by (1)H and (13)C NMR spectroscopy four main species of INH-NAD(H) adducts that coexist in solution. Two of them are open diastereoisomers consisting of the covalent attachment of the isonicotinoyl radical at position four of the nicotinamide coenzyme. The other two result from a cyclization involving the amide group from the nicotinamide and the carbonyl group from the isonicotinoyl radical to give diastereoisomeric hemiamidals. Although an INH-NAD(H) adduct with a 4S configuration has been characterized within the active site of InhA from Xray crystallography and this bound adduct interpreted as an open form (Rozwarski et al., Science 1998, 279, 98-102), it is legitimate to raise the question about the effective active form(s), open or cyclic, of INH-NAD(H) adduct(s). Is there a single active form or are several forms able to inhibit the InhA activity with different levels of inhibitory potency?  相似文献   
65.
For use in micro-patterned scaffolds in tissue engineering, novel diacrylated triblock macromers (PLA-b-PCL-b-PLA, PGA-b-PCL-b-PGA and PCL-b-PEO-b-PCL) were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). All diacrylated polymers were designed as triblock copolymers and involved biodegradable blocks of relatively non-polar epsilon-caprolactone (CL) and polar monomers such as glycolide (GA), lactide (LA) or ethylene oxide (EO). All triblock polymers were prepared in molecular weights of a few kilo daltons via the anionic ring-opening polymerization (ROP) of the corresponding lactide, glycolide or caprolactone using stannous octoate [Sn(Oct)(2)] as catalyst. The polymers had low polydispersity indices, ranging from 1.23 to 1.56. Biodegradable polymeric networks were prepared with conversions of 72-84% via photopolymerization of the triblock diacrylated polymers with 2,2-dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator. PLA-b-PCL-b-PLA copolymers crumbled easily and were not suitable for micro-patterning. PGA-b-PCL-b-PGA copolymers had higher water contact angles than PCL-b-PEO-b-PCL and were also cytocompatible with Fibroblasts 3T3.  相似文献   
66.
A novel generally applicable synthesis of coumarins from phenolic substrates utilizing ring-closing metathesis is described. This sequence involves O-allylation of phenols followed by ortho-Claisen rearrangement, subsequent based-induced isomerization affording 2-(1-propenyl)phenols, acylation with acryloyl chloride, and finally ring-closing metathesis (RCM) with Grubbs’ second generation catalyst.  相似文献   
67.
68.
It is well known that porphyrin derivatives play a key role in the primary process of photo-synthesis[1], in which porphyrins directly absorb the sunlight or indirectly acquire excitation en-ergy from light-harvesting antenna system to reach their excited state, and then donate electrons to quinone acceptors to yield a series of charge-separated species. In general, only first singlet ex-cited state of porphyrins is involved in energy transfer process[2]. However, highly excited state (S2 stat…  相似文献   
69.
The thermal unimolecular decomposition of hex-1-ene-3-yne (HEY) has been investigated over the temperature range 949–1230 K using the technique of very low-pressure pyrolysis (VLPP). One reaction pathway is the expected C5? C6 bond fission to form the resonance-stabilized 3-ethenylpropargyl radical. There is a concurrent process producing molecular hydrogen which probably occurs via the intermediate formation of hexatrienes and cyclohexa-1,3-diene. RRKM calculations yield the extrapolated high-pressure rate parameters at 1100 K given by the expressions 1016.0±0.3 exp(?300.4 ± 12.6 kJ mol?1/RT) s?1 for bond fission and 1013.2+0.4 exp(?247.7 ± 8.4 kJ mol?1/RT) for the overall formation of hydrogen. The A factors were assigned from the results of previous studies of related alkynes, alkenes, and alkadienes. The activation energy for the bond fission reaction leads to ΔH [H2CCHCC?H2] = 391.9, DH [H2CCHCCCH2? H] = 363.3, and a resonance stabilization energy of 56.9 ± 14.0 kJ mol?1 for the 3-ethenylpropargyl radical, based on a value of 420.2 kJ mol?1 for the primary C? H bond dissociation energy in alkanes. Comparison with the revised value of 46.6 kJ mol?1 for the resonance energy of the unsubstituted propargyl radical indicates that the ethenyl substituent (CH2?CH) on the terminal carbon atom has only a small effect on the propargyl resonance energy. © John Wiley & Sons, Inc.  相似文献   
70.
[reaction: see text] An enzyme-compatible biphasic reaction media for the asymmetric biocatalytic reduction of ketones with in situ cofactor regeneration has been developed. In this biphasic reaction media, which is advantageous for reactions at higher substrate concentrations, both enzymes (alcohol dehydrogenase and FDH from Candida boidinii) remain stable. The reductions with poorly water-soluble ketones were carried out at substrate concentrations of 10-200 mM, and the optically active (S)-alcohols were formed with moderate to good conversions and with up to >99% ee.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号