首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   35篇
  国内免费   1篇
化学   380篇
力学   6篇
数学   34篇
物理学   26篇
  2023年   6篇
  2022年   11篇
  2021年   16篇
  2020年   27篇
  2019年   21篇
  2018年   7篇
  2017年   12篇
  2016年   10篇
  2015年   26篇
  2014年   14篇
  2013年   11篇
  2012年   27篇
  2011年   20篇
  2010年   14篇
  2009年   6篇
  2008年   21篇
  2007年   24篇
  2006年   23篇
  2005年   23篇
  2004年   17篇
  2003年   6篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1974年   6篇
  1964年   4篇
  1961年   2篇
  1960年   3篇
  1932年   2篇
  1929年   1篇
  1925年   1篇
  1924年   1篇
  1897年   2篇
  1891年   2篇
  1890年   1篇
排序方式: 共有446条查询结果,搜索用时 171 毫秒
431.
We report the first case of a pharmaceutical cocrystal formed between an inorganic acid and an active pharmaceutical ingredient (API), which enabled us to develop a stable crystalline and bioavailable solid dosage form for pharmaceutical development where otherwise only unstable amorphous free form or salts could have been used.  相似文献   
432.
The bond dissociation energies for losing one water from Cd(2+)(H(2)O)(n) complexes, n = 3-11, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with a thermal electrospray ionization source. Kinetic energy dependent cross sections are obtained for n = 4-11 complexes and analyzed to yield 0 K threshold measurements for loss of one, two, and three water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are converted from 0 to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water from each complex. Theoretical geometry optimizations and single point energy calculations are performed on reactant and product complexes using several levels of theory and basis sets to obtain thermochemistry for comparison to experiment. The charge separation process, Cd(2+)(H(2)O)(n) → CdOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), is also observed for n = 4 and 5 and the competition between this process and water loss is analyzed. Rate-limiting transition states for the charge separation process at n = 3-6 are calculated and compared to experimental threshold measurements resulting in the conclusion that the critical size for this dissociation pathway of hydrated cadmium is n(crit) = 4.  相似文献   
433.
Glycopolymers with repeat units comprised of the disaccharide trehalose and an oligoamine of increasing amine have been previously synthesized by our group and shown to efficiently deliver pDNA (plasmid DNA) to HeLa cells while remaining relatively nontoxic. Complexes formed between the most amine-dense of these polycations and pDNA were also found to be relatively stable in serum and have low aggregation, which is desirable for in vivo gene delivery. To lend insight into these interesting results, this study was aimed at investigating the binding strength and mechanism of interaction between these macromolecules, via isothermal titration calorimetry (ITC) and ethidium bromide exclusion assays. The size of these pDNA-polymer complexes, or polyplexes, at various states of formation was determined through light scattering and zeta-potential measurements. Varying degrees of pDNA secondary structure change occurred upon interaction with the polymers, as evidenced by circular dichroism spectra through increasing molar ratios of polymer amine to DNA phosphate, and Fourier transform infrared (FT-IR) results demonstrated stronger electrostatic binding with the phosphate backbone with the least amine-dense of the series. It was concluded that, depending on the number of secondary amines in the repeat unit, these polymers interact with pDNA via different mechanisms with varying extents of electrostatic interaction and hydrogen bonding. These differing mechanisms may affect the ability of trehalose to serve as a deterrent against aggregation in serum conditions and lend insight into the roles of polymer-pDNA binding during the complex transfection process.  相似文献   
434.
The twist energy parameter ( E T) that governs the supercoiling free energy, and the linking difference (Delta l) are measured for p30delta DNA in solutions containing 0-40 w/v % ethylene glycol (EG). A plot of E T vs -ln a w, where a w is the water activity, displays the full (reverse) sigmoidal profile of a discrete structural transition. A general theory for the effect of added osmolyte on a cooperative structural transition between two duplex states, 1 right arrow over left arrow 2, is formulated in terms of parameters applicable to individual base-pair subunits. The resulting fraction of base pairs in the 2-state ( f 2 (0)) is incorporated into expressions for the effective torsion and bending elastic constants, the effective twist energy parameter ( E T (eff)), and the change in intrinsic twist (delta l 0). Fitting the expression for E T (eff) to the measured E T values yields reasonably unambiguous estimates of E T 1 and E T 2 , the midpoint value (ln a w) 1/2, and the midpoint slope ( partial differential E T/ partial differential ln a w) 1/2, but does not yield unambiguous estimates of the equilibrium constant ( K 0), the difference in DNA-water preferential interaction coefficient (DeltaGamma), or the inverse cooperativity parameter ( J). Fitting a noncooperative model (assumed J = 1.0) to the data yields K 0 = 0.067 and DeltaGamma = -30.0 per base pair (bp). Essentially equivalent fits are provided by models with a wide range of correlated J, DeltaGamma, and K 0 values. Other results favor DeltaGamma in the range -1.0 to 0, which then requires K 0 > or = 0.914, and a cooperativity parameter, 1/ J > or = 30.0 bp. The measured delta l 0 and circular dichroism (CD) at 272 nm are found to be compatible with curves predicted using the same f 2 (0) values that best-fit the E T data. At least 7-10% of the base pairs are inferred to exist in the 2-state in 0.1 M NaCl in the complete absence of added osmolyte. Compared with the 1-state, the 2-state has a approximately 2.0- to 2.1-fold greater torsion elastic constant, a approximately 0.70-fold smaller bending elastic constant, a approximately 0.91-fold smaller E T value, a approximately 0.2% lower intrinsic twist, a somewhat lower CD near both 272 and 245 nm, and less water and/or more EG in its neighborhood. However, the relative change in preferential interaction coefficient associated with the transition is likely rather slight.  相似文献   
435.
This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, the Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the ‘Marchfelder Spargel’ can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.  相似文献   
436.
The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.  相似文献   
437.
Accounting for target flexibility and selecting “hot spots” most likely to be able to bind an inhibitor continue to be challenges in the field of structure‐based drug design, especially in the case of protein–protein interactions. Computational fragment‐based approaches using molecular dynamics (MD) simulations are a promising emerging technology having the potential to address both of these challenges. However, the optimal MD conditions permitting sufficient target flexibility while also avoiding fragment‐induced target denaturation remain ambiguous. Using one such technology (Site Identification by Ligand Competitive Saturation, SILCS), conditions were identified to either prevent denaturation or identify and exclude trajectories in which subtle but important denaturation was occurring. The target system used was the well‐characterized protein cytokine IL‐2, which is involved in a protein–protein interface and, in its unliganded crystallographic form, lacks surface pockets that can serve as small‐molecule binding sites. Nonetheless, small‐molecule inhibitors have previously been discovered that bind to two “cryptic” binding sites that emerge only in the presence of ligand binding, highlighting the important role of IL‐2 flexibility. Using the above conditions, SILCS with hydrophobic fragments was able to identify both sites based on favorable fragment binding while avoiding IL‐2 denaturation. An important additional finding was that acetonitrile, a water‐miscible fragment, fails to identify either site yet can induce target denaturation, highlighting the importance of fragment choice. © 2012 Wiley Periodicals, Inc.  相似文献   
438.
Alkylsiloxane self-assembled monolayers (SAMs) are used in the semiconductor industry and, more recently, as proxies for organics adsorbed on airborne mineral dust and on buildings and construction materials. A number of methods have been used for removing the SAM from the substrate after reaction or use, particularly plasmas or piranha (H2SO4/H2O2) solution. However, when the substrates are reused to make new SAMs, the impact of the cleaning methods on the chemistry of subsequently formed SAMs on the surface is not known. Here we report atomic force microscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Fourier transform infrared studies of changes in a silicon substrate upon repetitive deposition and removal of SAMs by these two methods. It is shown that a thicker layer of silicon oxide is formed, and the surface becomes irregular and roughened, particularly after the piranha treatment. This layer of silica impacts the structure of the SAMs attached to it and can serve as a reservoir for trace gases that adsorb on it, potentially contributing to the subsequent reactions of the SAM. The implications for the use of such surfaces as a proxy for reactions of organics on airborne dust particles and on structures in the boundary layer are discussed.  相似文献   
439.
We report the formation of high-precision catalysts using encapsulated rhodium complexes. In the current example, the encapsulated rhodium catalyst shows unprecedented high selectivity in the rhodium-catalyzed hydroformylation of internal alkenes, forming predominantly one of the branched aldehydes. This catalyst system is the first example that is able to discriminate between carbon atoms C3 and C4 in trans-3-octene.  相似文献   
440.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号