首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   1篇
化学   86篇
力学   7篇
数学   7篇
物理学   26篇
  2019年   6篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   9篇
  2001年   3篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1996年   5篇
  1995年   3篇
  1993年   6篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
101.
Direct synthesis of dimethyl carbonate offers prospects for a “green chemistry” replacement to eliminate use of phosgene for polymer production and other processes. The carbonylation of methanol to produce dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites prepared by solid-state ion exchange has been investigated, focusing on the interaction of carbon monoxide with the Cu+ zeolites. The methanol carbonylation mechanism reported previously has been extended to account for carbon monoxide adsorption at high pressure. The comparison of the results obtained from Cu+X and Cu+ZSM-5 show that strong CO adsorption on the catalyst is not related to increased rate of dimethyl carbonate production. The rate limiting step for DMC production is best described as the Eley-Rideal reaction of gas-phase CO with surface methoxide.  相似文献   
102.
Hrovat DA  Isborn CM  Kahr B  Borden WT 《Organic letters》2008,10(21):4763-4766
B3LYP/6-31G(d) calculations find that cubanes, persubstituted with NO2 or BF2 groups, are predicted to undergo near-barrierless, internal disrotations. However, as a consequence of the intrinsically higher energies of eclipsed conformations for threefold than for twofold rotors, the threshold mechanisms for octamethyl-, octakis(trifluoromethyl)-, octakis(trichloromethyl)-, octakis(tribromomethyl)-, octasilylcubane, and octakis(trichlorosilyl)cubane are calculated to be mono- or conrotation. The cubanes with the larger substituents are predicted to be O-symmetric, resolvable, and thus optically active.  相似文献   
103.
[structure: see text] B3LYP/6-31G* calculations have been used to investigate the origins of the relative barrier heights for the degenerate Cope rearrangements of semibullvalene (1), barbaralane (2), bullvalene (3), and dihydrobullvalene (4). We conclude from our calculations that, of the four transition structures (TSs), that for rearrangement of 1 has the smallest amount of interallylic bonding. Nevertheless, relief of strain in the reactant confers on 1 the lowest barrier to Cope rearrangement. Conjugation between the cyclopropane ring and the pi bond of the etheno bridge in 3 makes the barrier for its Cope rearrangement higher than that for 4 and also contributes to making the barrier for 3 higher than that for 2. However, the relatively low barrier to the Cope rearrangement of 2 is largely due to the TS for this reaction having the largest amount of interallylic bonding of all four TSs.  相似文献   
104.
The thermolytic behavior of four syn-tricyclo[4.2.0.0(2,5)]octa-3,7-dienes, each spanned by four propano bridges (13, 14, 21, and 26), has been investigated by means of calculations at the UB3LYP/ 6-31G* and CASPT2/6-31G levels. These calculations predict that 13 should undergo a degenerate Cope rearrangement (E(A) = 19.6 kcal/mol), whereas the other three C(20)H(24) isomers should prefer a necessarily disrotatory cyclobutene ring-opening reaction. In the case of 14, the ring-opening reaction (E(A) = 27.2 kcal/mol) is concerted and leads directly to 15, a 4-fold bridged cyclooctatetraene. In the ring opening of 21, the 1,6-bridge in the 4-fold bridged bicyclo[4.2.0]octa-2,4,7-triene 31 prevents formation of the corresponding cyclooctatetraene. In the ring opening of 26, the 4-fold bridged bicyclo[4.2.0]octa-2,4,7-triene derivative 36 is predicted to form the corresponding bridged cyclooctatetraene 38, which should undergo bond shift. The results of these calculations are found to be in very good agreement with the results of experiments on these hydrocarbons.  相似文献   
105.
The structure of β‐carboline, also called norharman (systematic name: 9H‐pyrido[3,4‐b]indole), C11H8N2, has been determined at 110 K. Norharman is prevalent in the environment and the human body and is of wide biological interest. The structure exhibits intermolecular N—H...N hydrogen bonding, which results in a one‐dimensional herringbone motif. The three rings of the norharman molecule collectively result in a C‐shaped curvature of 3.19 (13)° parallel to the long axis. The diffraction data show shorter pyridyl C—C bonds than those reported at the STO‐3G level of theory.  相似文献   
106.
107.
108.
Cyclobutane-1,2,3,4-tetrone has been both predicted and found to have a triplet ground state, in which a b(2g) σ MO and an a(2u) π MO are each singly occupied. The nearly identical energies of these two orbitals of (CO)(4) can be attributed to the fact that both of these MOs are formed from a bonding combination of C-O π* orbitals in four CO molecules. The intrinsically stronger bonding between neighboring carbons in the b(2g) σ MO compared to the a(2u) π MO is balanced by the fact that the non-nearest-neighbor, C-C interactions in (CO)(4) are antibonding in b(2g), but bonding in a(2u). Crossing between an antibonding, b(1g) combination of carbon lone-pair orbitals in four CO molecules and the b(2g) and a(2u) bonding combinations of π* MOs is responsible for the occupation of the b(2g) and a(2u) MOs in (CO)(4). A similar orbital crossing occurs on going from two CO molecules to (CO)(2), and this crossing is responsible for the triplet ground state that is predicted for (CO)(2). However, such an orbital crossing does not occur on formation of (CO)(2n+1) from 2n + 1 CO molecules, which is why (CO)(3) and (CO)(5) are both calculated to have singlet ground states. Orbital crossings, involving an antibonding, b(1), combination of lone-pair MOs, occur in forming all (CO)(2n) molecules from 2n CO molecules. Nevertheless, (CO)(6) is predicted to have a singlet ground state, in which the b(2u) σ MO is doubly occupied and the a(2u) π MO is left empty. The main reason for the difference between the ground states of (CO)(4) and (CO)(6) is that interactions between 2p AOs on non-nearest-neighbor carbons, which stabilize the a(2u) π MO in (CO)(4), are much weaker in (CO)(6), due to the much larger distances between non-nearest-neighbor carbons in (CO)(6) than in (CO)(4).  相似文献   
109.
This perspective describes research, carried out in the authors' labs over the past forty years, aimed at understanding, predicting, and measuring the singlet-triplet energy differences (ΔE(ST)) in diradicals. A theory for qualitatively predicting the ground states of diradicals and the use of Negative Ion Photoelectron Spectroscopy (NIPES) for measuring ΔE(ST) are described. The application of this theory, ab initio calculations, and NIPES to the prediction and measurement of ΔE(ST) in a wide variety of organic diradicals is detailed. Among the diradicals that are discussed in this perspective are HN, CH(3)N, PhN, CH(2), trimethylenemethane (TMM), oxyallyl (OXA), meta-benzoquinodimethane (MBQDM), meta-benzoquinone (MBQ), tetramethyleneethane (TME), 1,2,4,5-tetramethylenebenzene (TMB), and D(8 h) cyclooctatetraene (COT). All of these diradicals have been studied in one and, in most cases, in both of the authors' laboratories. The studies of OXA and D(8h) COT were, in fact, collaborations between the research groups of the authors. These two projects both took advantage of the ability of NIPES to provide information about transition states. Transition-state spectroscopy was used to measure the carbonyl stretching frequency in the singlet state of OXA and to establish that D(8h) COT violates the strictest version of Hund's rule.  相似文献   
110.
(8/8)CASSCF and (8/8)CASPT2 calculations have been performed in order to investigate the potential surface for the ring expansion of the (1)A(2) state of phenylphosphinidene (1c) to 1-phospha-1,2,4,6-cycloheptatetraene (3c). Unlike the comparable ring expansion of the (1)A(2) state of phenylnitrene (1b) to 1-aza-1,2,4,6-cycloheptatetraene (3b), ring expansion of 1c to 3c is computed to be quite endothermic. Nevertheless, cyclization of 1c, to form the bicyclic intermediate 2c in the ring expansion reaction, is computed to be only slightly more endothermic than the comparable cyclization reaction of 1b to 2b. The origins of these differences between the ring expansion reactions of 1b and 1c have been elucidated through the calculation of the energies of relevant isodesmic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号