全文获取类型
收费全文 | 107篇 |
免费 | 1篇 |
国内免费 | 1篇 |
专业分类
化学 | 88篇 |
力学 | 7篇 |
数学 | 8篇 |
物理学 | 6篇 |
出版年
2019年 | 6篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 5篇 |
2012年 | 6篇 |
2011年 | 9篇 |
2010年 | 2篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 7篇 |
2006年 | 6篇 |
2005年 | 8篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 8篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
Goren AC Hrovat DA Seefelder M Quast H Borden WT 《Journal of the American Chemical Society》2002,124(13):3469-3472
Time-dependent B3LYP/6-31G calculations have been performed at the optimized C(2) or C(2v) geometries of several substituted semibullvalenes (1(deloc)) and barbaralanes (2(deloc)), to compare the computed vertical electronic excitation energies with the temperature-dependent, long-wavelength absorptions that have been observed in the UV/vis spectra of some of these compounds by Quast and co-workers. The excellent agreement between the calculated vertical excitation energies and the observed values of lambda(max) provides strong support for the identification of the bishomoaromatic species 1(deloc) and 2(deloc) as the source of these absorptions. Furthermore, the CN stretching frequencies, computed for the C(2) geometry of 1,5-dimethyl-2,6-dicyano-4,8-diphenylsemibullvalene (1f(deloc)), fit the low-frequency absorptions seen in the IR spectrum of 1f, thus furnishing independent evidence that bishomoaromatic geometries of semibullvalenes have, in fact, been observed spectroscopically. B3LYP/6-31G calculations predict that 2,6-dicyano-4,8-diphenylsemibullvalene 1c has a C(2) equilibrium geometry (1c(deloc)) and that the long-wavelength UV/vis absorption (lambda(max) = 585 nm) and CN stretching frequencies (2192 and 2194 cm(-1)) computed for 1c(deloc) should serve to identify this bishomoaromatic semibullvalene when it is synthesized. 相似文献
2.
Herman Bachelard Peter Morris Andrew Taylor Nicola Thatcher 《Magnetic resonance imaging》1995,13(8):1223-1226
We are applying multi-nuclear high-field (500 MHz) MR spectroscopy of metabolising whole tissue preparations of the mammalian brain to studies on individual components of convulsions, which include prolonged depolarization, metabolic deprivation, and the effects of excitotoxins. The responses of glial cells and neurones can be partially distinguished by following labelling patterns of metabolic intermediates from 13C-labelled glucose or acetate (which enters only glial cells). This approach clearly confirmed our earlier indications that the metabolic response to depolarization (40 mM extracellular K+) occurs essentially in glial cells. Some evidence for metabolic shuttling between glia and neurones was obtained from the changes in C3/C4 ratios of glutamate and glutamine, and the C2/C3 of GABA. Mechanisms for metabolic support of neurones by glia may be of importance in neuronal protection under such metabolic stress as occurs in epilepsy. Changes in free intracellular divalent cations ([Ca2+]i and [Zn2+]i) were monitored using the 19F-MRS indicator, 5FBAPTA. Large increases in [Ca2+]i and decreases in PCr were produced by excitotoxins (glutamate and NMDA), depolarization or ischaemia, but intracellular Zn2+ appeared only after exposure to the excitotoxins. The NMDA receptor blocker, MK801, removed all of the responses to NMDA, but only prevented the appearance of Zn2+ observed with glutamate. These results indicate that the damage caused to neurones by such insults as convulsions is not due simply to the presence of excessive excitotoxic glutamate. 相似文献
3.
Edges of diffusion flames in a counterflow burner are examined numerically for Lewis greater than unity. When the speed of propagation is plotted against Damköhler for a range of Lewis a fold bifurcation is observed. It is shown that there exist stable positively and negatively propagating edges for some Damköhler and Lewis number pairs. It is further shown that changed local conditions can lead to a transition from positive (advancing into the unburnt gasses) to negative (receding) propagation. 相似文献
4.
We report on the catalytic effects by alkali-metal ions in the ethanolysis of p-nitrophenyl diphenyl phosphate, in continuation of our studies on alkali-metal ion catalysis and inhibition in nucleophilic displacement reactions at carbon, phosphorus and sulfur centres. The following selectivity order of catalytic reactivity was observed for nucleophilic displacement at the phosphorus center with p-nitrophenoxide as leaving group: Li+ > Na+ > K+ > Cs+. A minor reaction pathway with phenoxide leaving was also found. The kobs data have been dissected into reaction pathways by free ions (kEtO) and by ion pairs (kMOEt), with the latter being dominant, in a 4-membered transition-state. Further analysis is given in terms of initial-state and transition-state stabilization by the alkali-metal ions in terms of the Eisenman model (electrostatic interaction vs. desolvation). Results of ab-initio MO calculations are presented based on interaction between M+ and a model bipyramidal phosphorane intermediate and compared with the sulfurane analogue. 相似文献
5.
Deviations from bond enthalpy additivity (DeltaBEA) are frequently used to assess the thermodyamic stabilities of diradicals. (U)B3LYP/6-31G calculations have been performed in order to determine how well DeltaBEA values actually do reflect the thermodynamic stabilities of the triplet states of diradicals in which one or both nonbonding electrons occupy a delocalized pi orbital. The calculations find that different pathways for forming sigma,pi-diradicals, such as alpha,2- and alpha,4-dehydrotoluene (4 and 6), give DeltaBEA values that differ by ca. 1 kcal/mol. The path dependency of the DeltaBEA values is computed to be one order of magnitude larger for non-Kekulé hydrocarbon diradicals, such as m-benzoquinodimethane (12) and 1,3-dimethylenecyclobutane-2,4-diyl (15), than for sigma,pi-diradicals. Since the DeltaBEA values for forming 4, 6, 12, and 15 are all path dependent, we conclude that DeltaBEA values for diradicals with one or two delocalized, nonbonding pi electrons do not, in general, uniquely define the thermodynamic stabilities of the diradicals. Hence, DeltaBEA values should not be used for this purpose, especially for non-Kekulé hydrocarbon diradicals. 相似文献
6.
Câmpian MV Perutz RN Procacci B Thatcher RJ Torres O Whitwood AC 《Journal of the American Chemical Society》2012,134(7):3480-3497
Three ruthenium complexes Λ-[cis-Ru((R,R)-Me-BPE)(2)(H)(2)] Λ-R,R-Ru1H(2), Δ-[cis-Ru((S,S)-Me-DuPHOS)(2)(H)(2)] Δ-S,S-Ru2H(2), and Λ-[cis-Ru((R,R)-Me-DuPHOS)(2)(H)(2)] Λ-R,R-Ru2H(2) (1 = (Me-BPE)(2), 2 = (Me-DuPHOS)(2)) were characterized by multinuclear NMR and CD spectroscopy in solution and by X-ray crystallography. The chiral ligands allow the full control of stereochemistry and enable mechanistic studies not otherwise available. Oxidative addition of E-H bonds (E = H, B, Si, C) was studied by steady state and laser flash photolysis in the presence of substrates. Steady state photolysis shows formation of single products with one stereoisomer. Solid state structures and circular dichroism spectra reveal a change in configuration at ruthenium for some Δ-S,S-Ru2H(2)/Λ-R,R-Ru2H(2) photoproducts from Λ to Δ (or vice versa) while the configuration for Λ-R,R-Ru1H(2) products remains unchanged as Λ. The X-ray structure of silyl hydride photoproducts suggests a residual H(1)···Si(1) interaction for Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(Et(2)SiH)(H)] and Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(PhSiH(2))(H)] but not for their Ru(R,R-BPE)(2) analogues. Molecular structures were also determined for Λ-[cis-Ru((R,R)-Me-BPE)(2)(Bpin)(H)], Λ-[Ru((S,S)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], Δ-[Ru((R,R)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], and trans-[Ru((R,R)-Me-DuPHOS)(2)(C(6)F(5))(H)]. In situ laser photolysis in the presence of p-H(2) generates hyperpolarized NMR spectra because of magnetically inequivalent hydrides; these experiments and low temperature photolysis with D(2) reveal that the loss of hydride ligands is concerted. The reaction intermediates [Ru(DuPHOS)(2)] and [Ru(BPE)(2)] were detected by laser flash photolysis and have spectra consistent with approximate square-planar Ru(0) structures. The rates of their reactions with H(2), D(2), HBpin, and PhSiH(3) were measured by transient kinetics. Rate constants are significantly faster for [Ru(BPE)(2)] than for [Ru(DuPHOS)(2)] and follow the substrate order H(2) > D(2) > PhSiH(3) > HBpin. 相似文献
7.
Prof. Xiaoguang Bao Dr. David A. Hrovat Prof. Weston Thatcher Borden 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(18):5687-5693
Cyclobutane‐1,2,3,4‐tetraone, (CO)4, was computationally predicted and, subsequently, experimentally confirmed to have a triplet ground state, in which a b2g σ MO and an a2u π MO were each singly occupied. In contrast, the (U)CCSD(T) calculations reported herein found that cyclobutane‐1,2,3,4‐tetrathione, (CS)4, and cyclobutane‐1,2,3,4‐tetraselenone, (CSe)4, both had singlet ground states, in which the b2g σ MO was doubly occupied and the a2u π MO was empty. Our calculations showed that both the longer C?X distances and smaller coefficients on the carbon atoms in the b2g and a2u MOs of (CS)4 and (CSe)4 contributed to the difference between the ground states of these two molecules and the ground state of (CO)4. An experimental test of the prediction of a singlet ground state for (CS)4 is proposed. 相似文献
8.
Dehestani A Lam WH Hrovat DA Davidson ER Borden WT Mayer JM 《Journal of the American Chemical Society》2005,127(10):3423-3432
Osmium tetroxide is reduced by molecular hydrogen in the presence of ligands in both polar and nonpolar solvents. In CHCl3 containing pyridine (py) or 1,10-phenanthroline (phen), OsO4 is reduced by H2 to the known Os(VI) dimers L2Os(O)2(mu-O)2Os(O)2L2 (L2 = py2, phen). However, in the absence of ligands in CHCl3 and other nonpolar solvents, OsO4 is unreactive toward H2 over a week at ambient temperatures. In basic aqueous media, H2 reduces OsO4(OH)n(n-) (n = 0, 1, 2) to the isolable Os(VI) complex, OsO2(OH)4(2-), at rates close to that found in py/CHCl3. Depending on the pH, the aqueous reactions are exergonic by deltaG = -20 to -27 kcal mol(-1), based on electrochemical data. The second-order rate constants for the aqueous reactions are larger as the number of coordinated hydroxide ligands increases, k(OsO4) = 1.6(2) x 10(-2) M(-1) s(-1) < k(OsO4(OH)-) = 3.8(4) x 10(-2) M(-1) s(-1) < k(OsO4(OH)2(2-)) = 3.8(4) x 10(-1) M(-1) s(-1). The observation of primary deuterium kinetic isotope effects, k(H2)/k(D2) = 3.1(3) for OsO4 and 3.6(4) for OsO4(OH)-, indicates that the rate-determining step in each case involves H-H bond cleavage. Density functional calculations and thermochemical arguments favor a concerted [3+2] addition of H2 across two oxo groups of OsO4(L)n and argue against H* or H- abstraction from H2 or [2+2] addition of H2 across one Os=O bond. The [3+2] mechanism is analogous to that of alkene addition to OsO4(L)n to form diolates, for which acceleration by added ligands has been extensively documented. The observation that ligands also accelerate H2 addition to OsO4(L)n highlights the analogy between these two reactions. 相似文献
9.
Dr. Robert J. Thatcher Dr. David G. Johnson Dr. John M. Slattery Dr. Richard E. Douthwaite 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(10):3414-3421
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts. 相似文献
10.
Lam WH Gaspar PP Hrovat DA Trieber DA Davidson ER Borden WT 《Journal of the American Chemical Society》2005,127(27):9886-9894
CASSCF, CASPT2, CCSD(T), and (U)B3LYP electronic structure calculations have been performed in order to investigate the thermal fragmentation of P-phenylphosphirane (1) to phenylphosphinidene (PhP) and ethylene. The calculations show that generation of triplet PhP via a stepwise pathway is 21 kcal mol(-1) less endothermic and has a 12 kcal mol(-1) lower barrier height than concerted fragmentation of 1 to give singlet PhP. The formation of singlet PhP via a concerted pathway is predicted to be stereospecific, whereas formation of triplet PhP is predicted to occur with complete loss of stereochemistry. However, calculations on fragmentation of anti-cis-2,3-dimethyl-P-mesitylphosphirane (cis-1Me) to triplet mesitylphosphinidene (MesP) indicate that this reaction should be more stereospecific, in agreement with the experimental results of Li and Gaspar. Nevertheless, with a predicted free energy of activation of 42 kcal mol(-1), the formation of MesP from cis-1Me is not likely to have occurred in an uncatalyzed reaction at the temperatures at which this phosphirane has been pyrolyzed. 相似文献