首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   10篇
  国内免费   2篇
化学   107篇
晶体学   9篇
力学   6篇
数学   37篇
物理学   26篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   14篇
  2015年   17篇
  2014年   14篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
181.
The primary mechanism for living polymerisation under a source of gamma radiation at low dose rates is shown to be reversible addition‐fragmentation chain transfer. This was demonstrated by showing that the initial transfer step determines the success of the polymerisation. When an inappropriate leaving group is chosen for the RAFT agent, the polymerisation is non‐living. Under a reversible termination mechanism the ‘living’‐ness should be independent of this initial transfer step.  相似文献   
182.
Herein, we have specifically designed two metalated porous organic polymers ( Zn-POP and Co-POP ) for syngas (CO+H2) production from gaseous CO2. The variable H2/CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 μmol g−1 h−1) and H2 (434.7 μmol g−1 h−1) production were preferentially obtained over Co-POP & Zn-POP , respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3-TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure–activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP .  相似文献   
183.
The effect of Mn additions (0… 2 wt%) on the decomposition of rapidly solidified Al-4.0 wt% Cu alloys (cooling rate 103 to 104 K/s; LQ treatment) were studied during ageing between RT and 450 °C by hardness, X-ray methods and electron microscopy. The results were compared with alloys homogenized in the region of the solid solution (SQ treatment). (i) The LQ treatment results in a quite better homogeneous distribution of the alloyed elements than the SQ one, that is less particles of intermetallic phases are present in the ascast state. (ii) At T < 250 °C Mn additions affect the decomposition kinetics by trapping of vacancies (retardation) and the diminution of the solubility of Cu atoms (acceleration). The first effect dominates in the stage of G.P. zone formation, the second one during precipitation of intermediate phases. (iii) At T ≧ 300 °C the intermetallic compound Cu2Mn3Al20 forms associated with a significant increase of the hardness.  相似文献   
184.
In this paper, we are concerned with the fractional Choquard equation on the whole space R N $\mathbb {R}^N$ ( Δ ) s u = 1 | x | N 2 s u p u p 1 $$\begin{equation*} \hspace*{7pc}(-\Delta )^s u={\left(\frac{1}{|x|^{N-2s}}*u^p\right)}u^{p-1} \end{equation*}$$ with 0 < s < 1 $0<s<1$ , N > 2 s $N>2s$ and p R $p\in \mathbb {R}$ . We first prove that the equation does not possess any positive solution for p 1 $p\le 1$ . When p > 1 $p>1$ , we establish a Liouville type theorem saying that if N < 6 s + 4 s ( 1 + p 2 p ) p 1 , $$\begin{equation*} \hspace*{7pc}N<6s+\frac{4s(1+\sqrt {p^2-p})}{p-1}, \end{equation*}$$ then the equation has no positive stable solution. This extends, in particular, a result in [27] to the fractional Choquard equation.  相似文献   
185.
This paper describes a versatile and effective method for the control of free radical polymerization and its use in the preparation of narrow polydispersity polymers of various architectures. Living character is conferred to conventional free radical polymerization by the addition of a thiocarbonylthio compound of general structure S=C(Z)SR, for example, S=C(Ph)SC(CH3)2Ph. The mechanism involves Reversible Addition-Fragmentation chain Transfer and, for convenience of referral, we have designated it the RAFT polymerization. The process is compatible with a very wide range of monomers including functional monomers such as acrylic acid, hydroxyethyl methacrylate, and dimethylaminoethyl methacrylate. Examples of narrow polydispersity (≤1.2) homopolymers, copolymers, gradient copolymers, end-functional polymers, star polymers, A-B diblock and A-B-A triblock copolymers are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号