首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2461篇
  免费   49篇
  国内免费   5篇
化学   1628篇
晶体学   22篇
力学   61篇
数学   265篇
物理学   539篇
  2023年   16篇
  2022年   56篇
  2021年   71篇
  2020年   56篇
  2019年   58篇
  2018年   60篇
  2017年   57篇
  2016年   114篇
  2015年   81篇
  2014年   104篇
  2013年   128篇
  2012年   155篇
  2011年   195篇
  2010年   151篇
  2009年   119篇
  2008年   195篇
  2007年   129篇
  2006年   100篇
  2005年   105篇
  2004年   85篇
  2003年   73篇
  2002年   53篇
  2001年   37篇
  2000年   44篇
  1999年   29篇
  1998年   21篇
  1997年   23篇
  1996年   18篇
  1995年   14篇
  1994年   27篇
  1993年   7篇
  1992年   23篇
  1991年   9篇
  1990年   8篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   7篇
  1983年   9篇
  1982年   8篇
  1981年   11篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1974年   6篇
  1973年   3篇
  1972年   2篇
  1968年   2篇
排序方式: 共有2515条查询结果,搜索用时 796 毫秒
991.
Bulk superconductivity in HfV2Ga4 with critical temperature close to 4.1 K was determined via magnetic susceptibility, electrical resistivity and specific heat measurements. Both the upper and lower critical field dependence with reduced temperature (T/Tc) exhibit non-conventional behavior. The electronic component of specific heat shows a double-jump, the first close to Tc and the other close to 0.75Tc. We speculate about the nature of the douple jump observed in specific heat considering two plausable scenarios: bulk inhomogeneities and the existence of a second gap.  相似文献   
992.
The relevance of the Casimir effect, discovered in 1948, has recently been pointed out in studies on materials such as graphene and high-temperature superconducting cuprates. In particular, the relationship between Casimir energy and the energy of a superconducting condensate with anisotropy characterized by high bidimensionality has already been discussed in certain theoretical scenarios. Using this proposal, this work describes the relationship between the effective mass of the charge carriers (m?=αme) and the macroscopic parameters characteristic of several families of high-Tc superconducting cuprates (Cu-HTSC) that have copper and oxygen superconducting planes (Cu-O). We have verified that an expression exists that correlates the effective mass, the London penetration length in the plane λab, the critical temperature Tc and the distance d between the equivalent superconducting planes of Cu-HTSC. This study revealed that the intersection between the asymptotic behavior of α as a function of Tc and the line describing the optimal value of α?2 (m??2me) indicates that a nonadiabatic region exists, which implies a carrier-lattice interaction and where the critical temperature can have its highest value in Cu-HTSC.  相似文献   
993.
Iron-doped SnO2 nanoparticles with chemical formula Sn1?xFexO2?y (x =?0.02, 0.05 and 0.10 at%) were successfully produced by a proteic sol–gel method. Thermogravimetric analysis and differential scanning calorimetry were performed to investigate the thermal behavior of the precursor powders as well as to select the appropriate calcination temperatures for oxide formation. X-ray absorption near-edge spectroscopy studies were carried out to determine the valence state of the transition metal used as dopant. Structural, morphological, and optical properties of the synthesized materials were studied by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results confirmed the formation of nanometric spherical particles of single-phased SnO2 with rutile-type tetragonal structure. Iron doping was accomplished in the form of Fe3+ substituting for Sn4+ in the SnO2 matrix, with the creation of oxygen vacancies to achieve charge balance. Band gaps of SnO2 were found to be unaffected by the introduction of iron.  相似文献   
994.
The present work presents numerical study of the influence of geometry on the performance of an oscillating water column (OWC) wave energy converter by means of a constructal design. The main purpose is to maximize the root mean square hydrodynamic power of device, (Phyd)RMS, subject to several real scale waves with different periods. The problem has two constraints: hydropneumatic chamber volume (V HC ) and total OWC volume (V T ), and two degrees of freedom: H1/L (ratio of height to length of the hydropneumatic chamber) and H3 (OWC submergence). For the numerical solution it was used a computational fluid dynamic (CFD) code, based on the finite volume method (FVM). The multiphasic volume of fluid (VOF) model is applied to tackle with the water–air interaction. The results led to important theoretical recommendations about the design of OWC device. For instance, the best shape for OWC chamber, which maximizes the (Phyd)RMS, was achieved when the ratio (H1/L) was four times higher than the ratio of height to length of incident wave (H/λ), (H1/L) o = 4(H/λ). Moreover, the optimal submergence (H3) was achieved as a function of wave height (H) and water depth (h), more precisely given by the following relation: h ? (3H/4) ≤ (H3) o h.  相似文献   
995.
Summary: Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. In this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 23-1 factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 ± 2.6 nm and the zeta potential −2.93 ± 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.  相似文献   
996.
In this paper, we present a Bayesian approach for estimation in the skew‐normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
997.
We consider oriented long-range percolation on a graph with vertex set \({\mathbb {Z}}^d \times {\mathbb {Z}}_+\) and directed edges of the form \(\langle (x,t), (x+y,t+1)\rangle \), for xy in \({\mathbb {Z}}^d\) and \(t \in {\mathbb {Z}}_+\). Any edge of this form is open with probability \(p_y\), independently for all edges. Under the assumption that the values \(p_y\) do not vanish at infinity, we show that there is percolation even if all edges of length more than k are deleted, for k large enough. We also state the analogous result for a long-range contact process on \({\mathbb {Z}}^d\).  相似文献   
998.
999.
In this paper we contribute to the generic theory of Hamiltonians by proving that there is a \(C^2\)-residual \({\mathcal {R}}\) in the set of \(C^2\) Hamiltonians on a closed symplectic manifold \(M\), such that, for any \(H\in {\mathcal {R}}\), there is a full measure subset of energies \(e\) in \(H(M)\) such that the Hamiltonian level \((H,e)\) is topologically mixing; moreover these level sets are homoclinic classes.  相似文献   
1000.
In this study, creeping and inertial incompressible fluid flows through three-dimensional porous media are considered, and an analytical–numerical approach is employed to calculate the associated permeability and apparent permeability. The multiscale homogenization method for periodic structures is applied to the Stokes and Navier–Stokes equations (aided by a control-volume type argument in the latter case), to derive the appropriate cell problems and effective properties. Numerical solutions are then obtained through Galerkin finite-element formulations. The implementations are validated, and results are presented for flows through cubic lattices of cylinders, and through the dendritic zone found at the solid–liquid interface during solidification of metals. For the interdendritic flow problem, a geometric configuration for the periodic cell is built by the approximate matching of experimental and numerical results for the creeping-flow problem; inertial effects are then quantified upon solution of the inertial-flow problem. Finally, the functional behavior of the apparent permeability results is analyzed in the light of existing macroscopic seepage laws. The findings contribute to the (numerical) verification of the validity of such laws.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号