首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   4篇
化学   159篇
力学   1篇
数学   1篇
物理学   32篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   11篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   11篇
  2007年   10篇
  2006年   13篇
  2005年   11篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   9篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   7篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1965年   1篇
  1962年   1篇
  1939年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
91.
A newly synthesized coordination polymer, [(CH3)3NH]2[CuZn(CN)5], was investigated using 13C and 63Cu solid‐state NMR techniques and single‐crystal X‐ray diffractometry. It consists of a three‐dimensional (3D) net composed of tetrahedral CuI and ZnII ions and CN ligands bridging between the two metal ions. (CH3)3NH+ ions are trapped in the inner space of the 3D net. Three coordination sites of each metal ion are used for the formation of the 3D net and the remaining site is occupied by a unidentate CN ligand. The structure of the 3D net is chiral and categorized as srs in the notation of the Reticular Chemistry Structure Resource (RCSR). In water vapor or open air at room temperature under ambient pressure, a powder of [(CH3)3NH]2[CuZn(CN)5] showed a structural transformation to [(CH3)3NH][CuZn(CN)4] · 1.5H2O, which is a known compound with a diamond‐like 3D net of [CuZn(CN)4] composed of tetrahedral CuI and ZnII ions and bridging CN ligands. 63Cu solid‐state NMR spectroscopy revealed that the Cu‐CN‐Zn orientation of the bridging CN ligands was conserved after the structural transformation.  相似文献   
92.
[reaction: see text] The electrooxidative glycosylation of newly designed 1-arylthio-substituted 2,3-dideoxyglycosides is described. The halide salt-mediated electrooxidation utilizing either of the alpha- or beta-thiodideoxyglycosides proceeded smoothly at -78 degrees C to give dideoxynucleosides in a beta-selective manner, presumably through a 1-halo-substituted glycosyl donor.  相似文献   
93.
We report grand canonical Monte Carlo simulations for a Lennard-Jones (LJ) fluid modeled on methane confined in nanospace with jungle-gym-like (JG) cubic structure, which is typically found in porous coordination polymers. Pillars composing the cubic structure were modeled as structureless smooth solid rods made of LJ carbon. We examined the effects of pore size, pore geometry, rod thickness, and rod potential onto the condensation phenomena in the JG pore structure. The simulations clarified that the condensation pressure and adsorption amount in the JG structure were influenced by pore size and rod potential, while the transition type was determined by rod thickness. The characteristics of the JG structure lie in the sensitivity to the slight changes in pore size, rod thickness, and rod potential owing to the combination of the packing effect of molecules and the superposition effect of rod potentials.  相似文献   
94.
95.
Plasma‐based ambient desorption/ionization mass spectrometry (ADI–MS) has attracted considerable attention in many fields because of its capacity for direct sample analyses. In this study, a high‐power pulsed microplasma jet (HPPMJ) was developed and investigated as a new plasma desorption/ionization source. In an HPPMJ, a microhollow cathode discharge is generated in a small hole (500 µm in diameter) using a pulsed high‐power supply. This system can realize a maximum power density of 5 × 108 W/cm3. The measured electron number density, excitation temperature and afterglow gas temperature of the HPPMJ were 3.7 × 1015 cm‐3, 7000 K at maximum and less than 60 °C, respectively, which demonstrate that the HPPMJ is a high‐energy, high‐density plasma source that is comparable with an argon inductively coupled plasma while maintaining a low gas temperature. The HPPMJ causes no observable damage to the target because of its low gas temperature and electrode configuration; thus, we can apply it directly to human skin. To demonstrate the analytical capacity of ADI–MS using an HPPMJ, the plasma was applied to direct solid sample analysis of the active ingredients in pharmaceutical tablets. Caffeine, acetaminophen, ethenzamide, isopropylantipyrine and ibuprofen were successfully detected. Application to living tissue was also demonstrated, and isopropylantipyrine on a finger was successfully analyzed without damaging the skin. The limits of detection (LODs) for caffeine, isopropylantipyrine and ethenzamide were calculated, and LODs at the picogram level were achieved. These results indicate the applicability of the HPPMJ for high‐sensitivity analysis of materials on a heat‐sensitive surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
96.
Nanoporous materials, such as zeolites, activated carbons, and metal–organic frameworks (MOFs), are peculiar platforms in which a variety of guest molecules are stored, reacted, and/or separated. The size of the nanopores is essential to realize advanced functions. In this work, we demonstrate a very simple but innovative method for the control of nanopore size, that is, reversible and continuous control by mechanical force loaded to soft nanoporous materials. The elastic properties of several microporous materials, including zeolites, zeolite‐templated carbon (ZTC), activated carbon, and MOFs (e.g., ZIF‐8), are examined and it is found that ZTC is a material that is suitable for the aforementioned idea thanks to its extraordinary soft properties compared to the others. The original pore size of ZTC (1.2 nm) can be contracted to 0.85 nm by using a relatively weak loading force of 135 MPa, whereas the other microporous materials barely contracted. To demonstrate the change in the physical properties induced by such artificial deformation, in situ gas adsorption measurements were performed on ZTC with and without loading mechanical force, by using CO2, CH4, and H2, as adsorbates. Upon the contraction by loading 69 or 135 MPa, CO2 adsorption amount is increased, due to the deepening of the physisorption potential well inside the micropores, as proved by the increase of the heat of adsorption. Moreover, the adsorption amount is completely restored to the original one after releasing the mechanical force, indicating the fully reversible contraction/recovery of the ZTC framework against mechanical force. The experimental results are theoretically supported by a simulation using Grand Canonical Monte Carlo method. The similar adsorption enhancement is observed also on CH4, whereas H2 is found as an exception due to the weak interaction potential.  相似文献   
97.
98.
We present a 2D NMR investigation of the gapped spin-1/2 compound Cu2(C5H10N2D2)2Cl4. Our measurements reveal the presence of a magnetic field-induced transverse staggered magnetization (TSM) which persists well below and above the field-induced 3D long-range magnetically ordered (FIMO) phase. The symmetry of this TSM is different from that of the TSM induced by the order parameter of the FIMO phase. Its origin, field dependence, and symmetry can be explained by an intradimer Dzyaloshinskii-Moriya interaction, as shown by DMRG calculations on a spin-1/2 ladder. This leads us to predict that the transition into the FIMO phase is not in the BEC universality class.  相似文献   
99.
The absorption spectra below the 4d threshold of cerium in Ce metal, CeF3 and CeO2 compounds were measured by using a CDM (Constant Deviation Monochromator) at the Photon Factory, KEK. The difference in structure between these spectra is discussed. The structure appeared in CeO2 were considered to be due to the tetravalent configuration of cerium (Ce4+) in the ground state.  相似文献   
100.
The symmetry adapted cluster (SAC)/symmetry adapted cluster configuration interaction (SAC-CI) methodology for the ground, excited, ionized, and electron-attached states of molecules was extended to giant molecular systems. The size extensivity of energy and the size intensivity of excitation energy are very important for doing quantitative chemical studies of giant molecular systems and are designed to be satisfied in the present giant SAC/SAC-CI method. The first extension was made to giant molecular crystals composed of the same molecular species. The reference wave function was defined by introducing monomer-localized canonical molecular orbitals (ml-CMO's), which were obtained from the Hartree-Fock orbitals of a tetramer or a larger oligomer within the electrostatic field of the other part of the crystal. In the SAC/SAC-CI calculations, all the necessary integrals were obtained after the integral transformation with the ml-CMO's of the neighboring dimer. Only singles and doubles excitations within each neighboring dimer were considered as linked operators, and perturbation selection was done to choose only important operators. Almost all the important unlinked terms generated from the selected linked operators were included: the unlinked terms are important for keeping size extensivity and size intensivity. Some test calculations were carried out for the ring crystals of up to 10 000-mer, confirming the size extensivity and size intensivity of the calculated results and the efficiency of the giant method in comparison with the standard method available in GAUSSIAN 03. Then, the method was applied to the ring crystals of ethylene and water 50-mers, and formaldehyde 50-, 100-, and 500-mers. The potential energy curves of the ground state and the polarization and electron-transfer-type excited states were calculated for the intermonomer distances of 2.8-100 A. Several interesting behaviors were reported, showing the potentiality of the present giant SAC/SAC-CI method for molecular engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号