首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   836篇
  免费   20篇
  国内免费   2篇
化学   635篇
晶体学   6篇
力学   11篇
数学   36篇
物理学   170篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   11篇
  2019年   12篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   19篇
  2013年   24篇
  2012年   24篇
  2011年   32篇
  2010年   27篇
  2009年   15篇
  2008年   50篇
  2007年   50篇
  2006年   39篇
  2005年   32篇
  2004年   39篇
  2003年   36篇
  2002年   49篇
  2001年   38篇
  2000年   30篇
  1999年   16篇
  1998年   9篇
  1997年   15篇
  1996年   12篇
  1995年   13篇
  1994年   7篇
  1993年   10篇
  1992年   23篇
  1991年   13篇
  1990年   13篇
  1988年   10篇
  1987年   9篇
  1986年   5篇
  1985年   20篇
  1984年   20篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   10篇
  1975年   7篇
  1974年   4篇
  1973年   10篇
  1968年   4篇
排序方式: 共有858条查询结果,搜索用时 31 毫秒
841.
Total synthesis of pyranicin was achieved using Cl2Pd(CH3CN)2-catalyzed diastereoselective cyclization of the allylic ester as the key step. The inhibitory activity of this compound for mitochondrial NADH-ubiquinone oxidoreductase (complex I) was slightly poorer than that of ordinary mono-THF acetogenins such as cis-solamin.  相似文献   
842.
In drug discovery programs, predicting key example compounds in competitors' patent applications is important work for scientists working in the same or in related research areas. In general, medicinal chemists are responsible for this work, and they attempt to guess the identity of key compounds based on information provided in patent applications, such as biological data, scale of reaction, and/or optimization of the salt form for a particular compound. However, this is sometimes made difficult by the lack of such information. This paper describes a method for predicting key compounds in competitors' patent applications by using only structural information of example compounds. Based on the assumption that medicinal chemists usually carry out extensive structure--activity relationship (SAR) studies around key compounds, the method identifies compounds located at the centers of densely populated regions in the patent examples' chemical space, as represented by Extended Connectivity Fingerprints (ECFPs). For the validation of the method, a total of 30 patents containing structures of launched drugs were selected to test whether or not the method is able to predict key compounds (the launched drugs). In 17 out of the 30 patents (57%), the method was able to successfully predict the key compounds. The result indicates that our method could provide an alternative approach to predicting key compounds in cases where the conventional medicinal chemist's approach does not work well. This method could also be used as a complement to the traditional medicinal chemist's approach.  相似文献   
843.
The enhancement of sonochemical-reaction efficiency by pulsed ultrasound at 152 kHz has been studied experimentally through absorbance measurements of triiodide ions from sonochemical oxidation of potassium iodide at different liquid volumes to determine sonochemical efficiency defined by reacted molecules per input ultrasonic energy. The mechanism for enhancement of the reaction efficiency by pulsed ultrasound is discussed using captured images of sonochemiluminescence (SCL), and measured time-resolved signals of the SCL pulses and pressure amplitudes. The high sonochemical-reaction efficiency by pulsed ultrasound, compared with that by continuous-wave ultrasound, is attributed both to the residual pressure amplitude during the pulse-off time and to the spatial enlargement of active reaction sites.  相似文献   
844.
845.
846.
Sano H  Hattori K  Saijo Y  Kokubun S 《Ultrasonics》2006,44(3):297-301
Failure of the tendon or ligament insertions is one of the most common injuries in the Orthopaedic field. To elucidate the pathogenesis of those injuries, the authors had attempted to measure the tissue sound speed that could be correlated to its elasticity using scanning acoustic microscopy (SAM). For the application of SAM to tendon or ligament insertions, it was necessary to determine the role of decalcification in SAM measurements since mineralized tissues including bone or mineralized fibrocartilage were present at the insertion site. To assess whether decalcification alters the tissue sound speed or not, supraspinatus tendon insertion of six Japanese white rabbits were measured with SAM operating in the frequency range of 50-150 MHz. Right supraspinatus tendons attached to the humeral head were cut into two pieces at the center of the tendon. Then, they were fixed with 10% neutralized formalin for 12 h. In each specimen, medial half was not decalcified, while lateral half was decalcified with ethylene-diamine-tetra-acetic acid (EDTA). After embedding in paraffin, 5 microm thick specimens were prepared for the measurement using SAM. The mean sound speed in each histologic zone was evaluated, and subsequently compared to that measured in the undecalcified and the decalcified specimens. Mean sound speed of non-mineralized fibrocartilage was 1544 m/s in the undecalcified specimens, while the value of 1541 m/s was determined in the decalcified ones. On the other hand, it decreased 2-3% after decalcification in the mineralized tissue including mineralized fibrocartilage and bone (mineralized fibrocartilage: undecalcified = 1648 m/s, decalcified = 1604 m/s; bone: undecalcified = 1716 m/s, decalcified = 1677 m/s). However, no significant differences were found between the undecalcified and the decalcified specimens (non-mineralized fibrocartilage: p = 0.84, mineralized fibrocartilage: p = 0.35, bone: p = 0.28). These results indicate that SAM could be applied to determine the properties of the tendon or the ligament insertions after decalcification with EDTA. Although SAM is applicable only for in vitro experimental study, it is expected that these data will contribute to better understanding concerning the biomechanics of tendon or ligament insertions as well as the pathogenesis of their failure at a microscopic level.  相似文献   
847.
The sonochemical reaction rate has been enhanced by the introduction of tiny air bubbles. The bubbles including micrometer-sized ones are produced by method of atomization and are introduced into aqueous luminol solution under 141-kHz sonication in order to investigate the enhancement of sonochemical reaction rate by introduction of tiny bubbles through the intensity measurement of sonochemiluminescence (SCL). It is shown that the introduction of tiny bubbles under sonication accomplishes the large SCL intensity compared to the cases of sonication only and liquid flow under sonication. It is also shown that it is important to adjust the configuration of tiny-bubble addition to the sound field. Through the investigations on the intensity and the spatial pattern of luminol-SCL, it has been clarified that tiny bubbles added into the sonicated liquid not only cause the liquid flow but also increase the number of collapsing bubbles active for sonochemical reaction. It is also shown that the tiny-bubble addition enhances the reaction rate of KI oxidation under sonication. Therefore, the present method of introduction of tiny bubbles is effective for enhancement of sonochemical reaction rate.  相似文献   
848.
A new ultrasound assisted emulsion (consisting of rapeseed oil and aqueous solution of Zn(2+) and Fe(2+) acetates) and evaporation protocol has been developed for the synthesis of zinc ferrite (ZnFe(2)O(4)) nanoparticles with narrow size distribution. The as-synthesized sample consisted of crystalline zinc ferrite particles with an average diameter of approximately 4 nm, whereas the average size of the heat-treated ferrite particles increases to approximately 12 nm. To remove the small amount of oil present on the surface of the as-synthesized ferrite sample, heat treatment was carried out at 350 degrees C for 3 h. The as-synthesized and heat-treated ferrites were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), TGA/DTA, transmission electron microscopy (TEM), and energy dispersion X-ray spectroscopy (EDS) techniques. Magnetic measurements show that the nanocrystalline ZnFe(2)O(4), prepared through this technique, is either at par with those obtained in other cases or even more improved. Both the as-synthesized and heat-treated samples reveal relaxation of magnetization. Our study also shows that one can tailor the magnetization and relaxation pattern by suitably controlling the particle size of the nanocrystalline ZnFe(2)O(4). The key features of this method are avoiding (a) the cumbersome conditions that exist in the conventional methods, (b) the usage of necessary additive components (stabilizers or surfactants, precipitants), and (c) calcination requirements. In addition, rapeseed oil has replaced organic nonpolar solvents used in earlier studies. As a whole, this simple straightforward sonochemical approach results in a better pure phase system of nanoferrite with improved magnetic properties.  相似文献   
849.
Attempts to prepare macroporous silica particles and metal-compound-nanoparticle-embedded silica microspheres were carried out using reactions between silicon tetrachloride and ultrasonic generating microdroplets including metal (Na, K, Al, Ni, Ti, Pt) compounds. Samples were collected by dry and wet processes. In the case of using nickel and aluminum compounds, acid-treated samples were also prepared. The obtained samples were characterized by scanning electron microscopy, X-ray fluorescence spectroscopy, powder X-ray diffractometry, mercury porosimetry, and the nitrogen adsorption method. The macroporous silica particles were prepared by removing the salt crystals, such as NaCl and KCl, formed in the silica frame. For acid-resistant metals, platinum- and titanium-compound nanoparticles are easily embedded in silica microspheres using these metal-compound solutions. For acid-soluble metals, aluminum- and nickel-compound-nanoparticle-embedded silicas were prepared by applying neutralization of the collection water. Micropores and mesopores were produced in wet-process samples. Acid treatment induced the increase of micropore volumes.  相似文献   
850.
Schiff-base type N,P-chelating ligands, phosphorus analogues of imino–anilido ligands, were designed and synthesized as a new type of ligands toward transition metals, and the rhodium–carbonyl complexes bearing the novel imino–phosphido and phosphaalkenyl-anilido ligands were synthesized as stable crystalline compounds. Their structures were definitively revealed by X-ray crystallographic analysis, showing the unique electronic features of the ligands. In addition, the effective trans-influence of the phosphorus atom was suggested on the basis of the structural parameters and spectroscopic features of the isolated complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号