首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   3篇
化学   217篇
晶体学   8篇
力学   1篇
数学   13篇
物理学   83篇
  2023年   4篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   12篇
  2013年   8篇
  2012年   13篇
  2011年   24篇
  2010年   12篇
  2009年   6篇
  2008年   14篇
  2007年   17篇
  2006年   19篇
  2005年   22篇
  2004年   18篇
  2003年   17篇
  2002年   16篇
  2001年   7篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   10篇
  1993年   3篇
  1992年   9篇
  1990年   2篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1970年   2篇
  1968年   2篇
排序方式: 共有322条查询结果,搜索用时 15 毫秒
31.
32.
The masking mechanisms of the bitter taste of propantheline bromide (PB) and oxyphenonium (OB) bromide by native and modified cyclodextrins, saccharides, surfactants, organic acids, nonionic and anionic polymers, and other compounds were investigated with ion selective electrodes. The intensity of the bitter taste for a mixed solution of cyclodextrin with PB or OB was quantitatively explained from the observed electromotive force with the following assumptions: the complex and the masking agent do not have any tastes and the bitter taste is independent of other tastes. Sodium dodecyl sulfate reduced the bitter taste remarkably, and this reduction was also explicable on the basis of the same mechanism. Sodium taurodeoxycholate enhanced the bitter taste, because of its strong bitterness, although it formed 1 : 1 complexes with PB and OB. The masking mechanism of saccharides was ascribed to overcoming the weak bitterness of the drug by the strong sweetness. Lambda-carrageenan suppressed the bitter taste remarkably. This suppression was ascribed to the binding of PB and OB to lambda-carrageenan, the effect of the solution viscosity on the bitter taste, and the covering of the bitter taste receptor by lambda-carrageenan. It was suggested that the moderate masking by other polymers was attributable to the effect of the solution viscosity or the receptor covering. Native and modified beta-cyclodextrins, sodium dodecyl sulfate, lambda-carrageenan, Tween 20, and sodium carboxymethyl cellulose are good masking agents for the bitter tastes of PB and OB. The drug ion selective electrode is a useful tool for understanding of the masking mechanism of the bitter taste, screening of masking agents, and estimation of appropriate concentrations of the masking agents.  相似文献   
33.
Selective formation of ZnO nanodots grown by metalorganic chemical vapor deposition (MOCVD) was achieved on focused-ion beam (FIB)-nanopatterned SiO2 and Si substrates. The selective formation characteristics, dimension, and density of ZnO nanodots on FIB-nanopatterned substrates strongly depended on the FIB-patterning and MOCVD-growth conditions. The mechanism of the selective formation of ZnO nanodots on FIB-nanopatterned SiO2 substrates is attributed to a surfactant effect of the implanted Ga which leads to the formation of the preferred nucleation sites for the growth of ZnO nanodots, while that of ZnO nanodots on nanopatterned Si substrates is mainly considered in terms of the generation of surface atomic steps and kinks, which are created by Ga+ ion sputtering, on the patterned Si areas.  相似文献   
34.
35.
A palladium-indium triflate catalyst was found to be much more active for the dimerization of vinylarenes compared with generally used cationic palladium(II) catalysts.  相似文献   
36.
The polymer microspheres were synthesized by dispersion copolymerization of divinylbenzene (DVB) with two vinylbenzyl-terminated poly(ethylene glycol methylether) (PEG)/poly(t-butyl methacrylate) (PBMA) macromonomer blends in methanol. In these systems of two macromonomer blends as the emulsifier, the polymer microspheres formed had a very narrow particle size distribution. Two macromonomers formed comicelles with DVB monomer and acted not only as the comonomer but also as the stabilizer. Such polymer microspheres were stabilized sterically with two-component grafted chains, such as PEG and PBMA, in methanol.  相似文献   
37.
38.
Multicanonical molecular dynamics based dynamic docking was used to exhaustively search the configurational space of an inhibitor binding to the N-terminal domain of heat-shock protein 90 (Hsp90). The obtained structures at 300 K cover a wide structural ensemble, with the top two clusters ranked by their free energy coinciding with the native binding site. The representative structure of the most stable cluster reproduced the experimental binding configuration, but an interesting conformational change in Hsp90 could be observed. The combined effects of solvation and ligand binding shift the equilibrium from a preferred loop-in conformation in the unbound state to an α-helical one in the bound state for the flexible lid region of Hsp90. Thus, our dynamic docking method is effective at predicting the native binding site while exhaustively sampling a wide configurational space, modulating the protein structure upon binding.  相似文献   
39.
The accelerator complex at the RIKEN Radioisotope Beam Factory accelerates heavy ions ranging from oxygen to uranium using triple stripping system to provide the beams at required charge. In many cases, the charge strippers cause problems during high-intensity beams accelerator operation. The charge stripper problem has been most significant during uranium beam acceleration because the lifetimes of the conventional carbon foils are extremely short. We conducted extensive R&D on the first stripper and found a solution using a low-Z gas stripper. We also plan to modify a second stripper operating recently with short-lifetime carbon foils. The stripper with better parameters will be needed when the beam intensity is increased by a new injector system for acceleration of uranium beam with higher charge.  相似文献   
40.
Plasma treatment of a polymeric surface could involve at least three major mechanisms: (1) direct interaction of reactive species in the low-temperature plasma state with the surface (line of sight irradiation effect), and (2) chemical reactions of plasma-induced reactive species with the surface, and (3) reactions among reactive species and the surface (plasma polymerization). The first and the third effects are considered to be limited to the surfaces which directly contact with plasma (glow). The second effect is not limited to the surfaces that contact with plasma state but can penetrate beyond the plasma zone by diffusion. Using an assembly of fibers, of which only the top layer contacts with plasma (glow), the penetration of chemical changes caused by plasma exposure was investigated. Results indicate that the fluorination effect (incorporation of fluorine-containing moieties on the surface of polymeric substrate) penetrates through a considerable thickness of the assembly of fibers, depending on the porosity (gas permeability) of the system. Chemical reactions of plasma-induced (chemically) reactive but nonpolymerizing species with the substrate fibers seems to predominate. The direct interactions of energetic species, such as ions, electrons, and electronically excited species, with polymeric surfaces seems to play relatively minor roles in the plasma treatment investigated. The major role of plasma, in this case, seems to be creating such chemically reactive species. © 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号