首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
化学   33篇
物理学   4篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
11.
1J(15N,H) coupling constants for enaminones and NH-forms of intramolecularly hydrogen-bonded Schiff bases as model compounds for sp2-hybridized nitrogen atoms are evaluated using density functional theory (DFT) to find the optimal functionals and basis sets. Ammonia is used as a test molecule and its one-bond coupling constant is compared with experiment. A methylamine Schiff base of a truncated molecule of gossypol is used for checking the performance of selected B3LYP, O3LYP, PBE, BHandH, and APFD density functionals and standard, modified, and dedicated basis sets for coupling constants. Both in vacuum and in chloroform, modeled by the simple continuum model of solvent, the modified basis sets predict significantly better the 1J(15N,H) value in ammonia and in the methylamine Schiff base of a truncated molecule of gossypol than the standard basis sets. This procure is then used on a broad set of intramolecularly hydrogen-bonded molecules, and a good correlation between calculated and experimental one-bond NH coupling constants is obtained. The 1J(15N,H) couplings are slightly overestimated. The calculated data show for hydrogen-bonded NH interatomic distances that the calculated values depend on the NH bond lengths. The shorter the bond lengths, the larger the 1J(15N,H). A useful correlation between 1J(15N,H) and NH bond length is derived that enables realistic predictions of one-bond NH coupling constants. The calculations reproduce experimentally observed trends for the studied molecules.  相似文献   
12.
13.
The 3He nuclear magnetic shieldings were calculated for single helium atom, its dimer, simple models of fullerene cages (He@Cn), and single wall carbon nanotubes. The performances of several levels of theory (HF, MP2, DFT‐VSXC, CCSD, CCSD(T), and CCSDT) were tested. Two sets of polarization‐consistent basis sets were used (pcS‐n and aug‐pcS‐n), and an estimate of 3He nuclear magnetic shieldings in the complete basis set limit using a two‐parameter fit was established. Theoretical 3He results reproduced accurately previously reported theoretical values for helium gas, dimer, and helium probe inside several fullerene cages. Excellent agreement with experimental values was achieved. 3He nuclear magnetic shieldings of single helium atom approaching various points of benzene ring were tested, and an impact of 3He confinement within fullerene cages of different size on the 3He chemical shift was determined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
14.
ABSTRACT

The method and basis set dependence of zero-point vibrational corrections (ZPVCs) to nuclear magnetic resonance shielding constants and anisotropies has been investigated using water as a test system. A systematic comparison has been made using the Hartree–Fock, second-order Møller–Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) and Kohn–Sham density functional theory with the B3LYP exchange-correlation functional methods in combination with the second-order vibrational perturbation theory (VPT2) approach for the vibrational corrections. As basis sets, the correlation consistent basis sets cc-pVXZ, aug-cc-pVXZ, cc-pCVXZ and aug-cc-pCVXZ with X = D, T, Q, 5, 6 and the polarisation consistent basis sets aug-pc-n and aug-pcS-n with n = 1, 2, 3, 4 were employed. Our results show that basis set convergence of the vibrational corrections is not monotonic and that very large basis sets are needed before a reasonable extrapolation to the basis set limit can be performed. Furthermore, our results suggest that coupled cluster methods and a decent basis set are required before the error of the electronic structure approach is lower than the inherent error of the VPT2 approximation.  相似文献   
15.
Density functional theory (DFT) was used to estimate water's isotropic nuclear shieldings and indirect nuclear spin–spin coupling constants (SSCCs) in the Kohn–Sham (KS) complete basis set (CBS) limit. Correlation‐consistent cc‐pVxZ and cc‐pCVxZ (x = D, T, Q, 5, and 6), and their modified versions (ccJ‐pVxZ, unc‐ccJ‐pVxZ, and aug‐cc‐pVTZ‐J) and polarization‐consistent pc‐n and pcJ‐n (n = 0, 1, 2, 3, and 4) basis sets were used, and the results fitted with a simple mathematical formula. The performance of over 20 studied density functionals was assessed from comparison with the experiment. The agreement between the CBS DFT‐predicted isotropic shieldings, spin–spin values, and the experimental values was good and similar for the modified correlation‐consistent and polarization‐consistent basis sets. The BHandH method predicted the most accurate 1H, 17O isotropic shieldings and 1J(OH) coupling constant (deviations from experiment of about ? 0.2 and ? 1 ppm and 0.6 Hz, respectively). The performance of BHandH for predicting water isotropic shieldings and 1J(OH) is similar to the more advanced methods, second‐order polarization propagator approximation (SOPPA) and SOPPA(CCSD), in the basis set limit. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
16.
Nuclear shieldings and chemical shifts of 5-fluorocytosine (5FC) were predicted in the gas phase and DMSO solution modeled by polarizable continuum model using B3LYP density functional and revised STO(1M)-3G basis set. For comparison, eight arbitrary selected basis sets including STO-3G and medium-size Pople-type and larger dedicated Jensen-type ones were applied. The former basis sets were significantly smaller, but the calculated structural parameters, harmonic vibrational frequencies, were very accurate and close to those obtained with larger, polarization-consistent ones. The predicted 13C and 1H chemical shieldings of 5FC and cytosine, selected as parent molecule, were acceptable (root mean square for 13C chemical shifts in DMSO of about 5 ppm and less) though less accurate than those calculated with large basis sets, dedicated for prediction of nuclear magnetic resonance parameters.  相似文献   
17.
The interaction of phenylalanine diamide (Ac‐Phe‐NHMe) with egg yolk lecithin (EYL) in chloroform was studied by 1H and 13C NMR. Six complexes EYL–Ac‐Phe‐NHMe, stabilized by N–H···O or/and C–H···O hydrogen bonds, were optimized at M06‐2X/6‐31G(d,p) level. The assignment of EYL and Ac‐Phe‐NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO‐3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar ‘head’ of the lecithin. Additionally, the most probable lecithin site of H‐bond interaction with Ac‐Phe‐NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
18.
Hartree–Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange‐correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin‐orbit zeroth‐order regular approximation Hamiltonian in combination with the large Slater‐type basis set QZ4P as well as with the four‐component Dirac–Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization‐consistent basis sets aug‐pcSseg‐4 for He, Ne and Ar, aug‐pcSseg‐3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero‐point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   
19.
A theoretical investigation on the planarity of molecular structure of zinc phthalocyanine (ZnPc) and its aromaticity has been performed using B3LYP and M06-2X density functionals combined with selected Pople-type basis sets. The effect of the applied calculation method on the optimized structure of ZnPc and ZnPc???H2O, both in the gas phase and in the polar solvent, was analyzed. To quantify the aromaticity of the ZnPc and ZnPc???H2O complexes, both the geometric and magnetic criteria, i.e., Harmonic Oscillator Model of Aromaticity (HOMA) index and the nucleus-independent chemical shift (NICS) values at the centers or 1 Å above the centers of structural subunits, were calculated. The energies of highest energy occupied molecular orbital (HOMO) and lowest energy unoccupied molecular orbital (LUMO) and energy gaps were also estimated. The results show that the free ZnPC molecule is flat in the gas phase and nonplanar in the polar environments (DMSO and water). ZnPC???H2O is nonpolar in the gas phase and polar solvent which is in agreement with recent X-ray reports. Both HOMA and NICS indexes indicate the presence of highly aromatic macrocycle and benzene rings while these parameters for pyrrolic ring are significantly smaller than in free pyrrole. The presence of polar solvents practically does not change aromaticity of the ring subunits of the studied compounds.  相似文献   
20.
Structural Chemistry - The first report on crystal and molecular structure of 3,6-diiodo-9-ethyl-9H-carbazole is presented. Experimental room-temperature X-ray and 13C chemical shift studies were...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号