首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1602篇
  免费   71篇
  国内免费   9篇
化学   1289篇
晶体学   5篇
力学   9篇
数学   141篇
物理学   238篇
  2023年   28篇
  2022年   39篇
  2021年   49篇
  2020年   62篇
  2019年   59篇
  2018年   44篇
  2017年   25篇
  2016年   55篇
  2015年   34篇
  2014年   55篇
  2013年   69篇
  2012年   148篇
  2011年   170篇
  2010年   62篇
  2009年   44篇
  2008年   102篇
  2007年   110篇
  2006年   95篇
  2005年   95篇
  2004年   75篇
  2003年   55篇
  2002年   45篇
  2001年   13篇
  2000年   7篇
  1999年   5篇
  1998年   9篇
  1997年   9篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1986年   2篇
  1985年   5篇
  1984年   10篇
  1983年   2篇
  1982年   7篇
  1981年   14篇
  1980年   9篇
  1979年   4篇
  1978年   7篇
  1977年   9篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   7篇
  1971年   1篇
  1964年   1篇
  1896年   1篇
排序方式: 共有1682条查询结果,搜索用时 15 毫秒
21.
22.
This work investigates the oxidation of hydrogen near its second explosion limit in a turbulent flow reactor at pressures of 1 to 8 bar, temperatures of 950 K and an equivalence ratio of 0.035. The concentrations of H2, O2 and H2O are measured along the reactor and simulated using several kinetic models from the literature. These experiments demonstrate evident negative pressure dependence from roughly 1 to 4 bar, with further increases in pressure resuming its positive impact on reaction rates. The simulated and measured species concentrations along the reactor generally agree within a factor of 2.Further investigation is then conducted to measure the rate coefficient of reaction H + O2 (+ M) = HO2 (+M) (R2), which is one of the most sensitive reactions in hydrogen's oxidation chemistry at these conditions. This investigation is conducted by using nitric oxide (NO) as a dopant and measuring the resulting, quasi-steady-state concentrations of NO2. The rate coefficients are obtained at 950 – 1010 K. Combined with literature results, an Arrhenius expression is proposed, k2,0N2 = 4.50 × 1020 (T/K)?1.73 [cm6 mole?2 s?1], for the reaction rate at the low-pressure limit over 500 K – 2000 K with N2 as the bath gas. Simulations using the models from the literature with the proposed Arrhenius expression for this reaction then demonstrate improved agreement with the experiments.  相似文献   
23.
This work presents a method for using nanosecond repetitively pulsed (NRP) plasma discharges for accelerating a propagating flame such that the deflagration-to-detonation transition occurs. A strategy is developed for bringing the location of the plasma near the tube wall and, thus, reducing the presence of the electrodes in the combustion tube as well as presenting a configuration in which cooling of the electrodes is viable for practical applications. Time-of-flight measurements were used in combination with energy deposition measurements and high-speed OH*-chemiluminescence imagery to investigate the flame acceleration process. For stoichiometric hydrogen–air flames, successful transition to detonation was achieved by applying a burst of 110 pulses at 100 kHz, with energies as low as 10 mJ per pulse. This was also achieved when plasma discharges were applied in the vicinity of the wall. Two enhancement mechanisms for flame acceleration were identified. The essential role of shock–flame interaction was established as being the main mechanism for flame acceleration when the discharges are located near the wall. This work presents an effective alternative that allows for NRP discharges to be applied near the wall while successfully maintaining a promising success rate for detonation transition.  相似文献   
24.
25.
We show both theoretically and experimentally that an electromagnetic wave can be totally absorbed by an overdense plasma when a subwavelength diffraction grating is placed in front of the plasma surface. The absorption is due to dissipation of surface plasma waves (plasmons polaritons) that have been resonantly excited by the evanescent component of the diffracted electromagnetic wave. The developed theoretical model allows one to determine the conditions for the total absorption.  相似文献   
26.
Image contrast is calculated by inputting experimental 2D T1T2 relaxation spectra into the ODIN software interface. The method involves characterising a magnetic resonance imaging pulse sequence with a “relaxation signature” which describes the sensitivity of the sequence to relaxation and is independent of sample parameters. Maximising (or minimising) the overlap between the experimental 2D T1T2 relaxation spectra and the relaxation signature can then be used to maximise image contrast. The concept is illustrated using relaxation signatures for the echo planar imaging and Turbo spin-echo imaging sequences, together with in-vitro 2D T1T2 spectra for liver and cartilage.  相似文献   
27.
In recent years, polarized 3He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3He to 70% polarization would require 20−40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3He gas using the SEOP method.  相似文献   
28.
A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.  相似文献   
29.
Five 500 W fiber amplifiers were coherently combined using a diffractive optical element combiner, generating a 1.93 kW beam whose M(2)=1.1 beam quality exceeded that of the inputs. Combining efficiency near 90% at low powers degraded to 79% at full power owing to thermal expansion of the fiber tip array.  相似文献   
30.
Certain tight binding lattices host macroscopically degenerate flat spectral bands. Their origin is rooted in local symmetries of the lattice, with destructive interference leading to the existence of compact localized eigenstates. We study the robustness of this localization to disorder in different classes of flat band lattices in one and two dimensions. Depending on the flat band class, the flat band states can either be robust, preserving their strong localization for weak disorder W, or they are destroyed and acquire large localization lengths ξ that diverge with a variety of unconventional exponents ν, ξ ~ 1 /W ν .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号