首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   54篇
  国内免费   7篇
化学   729篇
晶体学   30篇
力学   57篇
综合类   2篇
数学   151篇
物理学   205篇
  2024年   3篇
  2023年   8篇
  2022年   50篇
  2021年   45篇
  2020年   37篇
  2019年   34篇
  2018年   40篇
  2017年   27篇
  2016年   58篇
  2015年   41篇
  2014年   59篇
  2013年   105篇
  2012年   84篇
  2011年   91篇
  2010年   57篇
  2009年   50篇
  2008年   41篇
  2007年   56篇
  2006年   43篇
  2005年   36篇
  2004年   20篇
  2003年   23篇
  2002年   24篇
  2001年   9篇
  1999年   7篇
  1998年   9篇
  1997年   6篇
  1996年   13篇
  1995年   9篇
  1994年   5篇
  1993年   11篇
  1992年   6篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   9篇
  1984年   2篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1964年   2篇
  1962年   1篇
排序方式: 共有1174条查询结果,搜索用时 15 毫秒
21.
The chemical functionalization of carboxylated short multi-walled carbon nanotubes (Sh–MWCNT–COOH) by creatinine (Sh–MWCNT–amide) and later modification with aromatic aldehydes for producing 2-amino-5-arylidene-1-methyl-1H–imidazol-4(5H)-one (Sh–MWCNT–imidazols) via thermal and microwave methods have been investigated. All the products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, elemental analysis, thermogravimetric analysis, derivative thermogravimetric and cellular investigations. These functionalizations have been chosen due to the active sites of CC and carbonyl groups in Sh–MWCNT–imidazols, which might be used as functional materials in the future. MTT assay was used to examine the behavior of cell proliferation after 72 h of cell culture experiments. Cellular investigations were performed for two kinds of cells, human breast and gastric cancer cells. Cellular results showed high toxicity of modified Sh–MWCNTs on the gastric cancer cells compared to breast cells.  相似文献   
22.
Water structure modification by sugars with a wide difference in stereoregular structures ranging from monosaccharide to trisaccharide and its consequence on the micellization behavior of cetyltrimethylammonium bromide (CTAB) in aqueous medium have been investigated. The characteristic variation in water absorption peaks in the presence of d(?)fructose has been studied by near-infrared spectroscopy. The analyses show that the hydrogen bonding capability of d(+)glucose, d(?)fructose, sucrose, trehalose and raffinose is mainly responsible for the variation in water-additive interactions. The critical micelle concentration determined by specific conductivity measurement and aggregation number determined by steady state fluorescence quenching method show significant variations in presence of additives for CTAB in aqueous solution. The sugars interact with the water structure to varying extents owing to differences in hydrogen bonding capability depending on the stereoregularity of the structure. This induces differences in the microenvironment for competition between the hydrophobic interaction and degree of hydration of the hydrophilic group of the surfactant to ultimately influence the micellization behavior in aqueous solution.  相似文献   
23.
Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30–35 °C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic.  相似文献   
24.
Journal of Solid State Electrochemistry - A facile and sensitive approach is introduced to precisely determine trace amounts of prostate specific antigen (PSA) by gold nanostructures deposited on...  相似文献   
25.
Journal of Solid State Electrochemistry - The increasing efforts devoted to fabricating electrochromic (EC) devices have motivated a lot of studies to develop new EC materials. Herein, we introduce...  相似文献   
26.
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.  相似文献   
27.
Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) „peptoids“ are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne–azide „click“ coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a „volumetric“ spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.  相似文献   
28.
Abstract

We report herein a study on the competitive electrophilic cyclization of 5-(dimethoxyphosphoryl)-alka-3,4-dienoates involving 5-endo-trig and 6-endo-trig mode cyclizations. Reaction with electrophiles produces mixtures of the 2-(2-oxo-2,5-dihydro-1,2-oxaphosphol-5-yl)-alkanoates and (6-oxo-5,6-dihydro-2H-pyran-2-yl)-phosphonates by competitive electrophilic cyclization due to the participation of the neighboring phosphonate and carboxylate groups.  相似文献   
29.
Polygala species are frequently used worldwide in the treatment of various diseases, such as inflammatory and autoimmune disorders as well as metabolic and neurodegenerative diseases, due to the large number of secondary metabolites they contain. The present study was performed on Polygala inexpectata, which is a narrow endemic species for the flora of Turkey, and resulted in the isolation of nine known compounds, 6,3′-disinapoyl-sucrose (1), 6-O-sinapoyl,3′-O-trimethoxy-cinnamoyl-sucrose (tenuifoliside C) (2), 3′-O-(O-methyl-feruloyl)-sucrose (3), 3′-O-(sinapoyl)-sucrose (4), 3′-O-trimethoxy-cinnamoyl-sucrose (glomeratose) (5), 3′-O-feruloyl-sucrose (sibiricose A5) (6), sinapyl alcohol 4-O-glucoside (syringin or eleutheroside B) (7), liriodendrin (8), and 7,4′-di-O-methylquercetin-3-O-β-rutinoside (ombuin 3-O-rutinoside or ombuoside) (9). The structures of the compounds were determined by the spectroscopic methods including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC), and HRMS. The isolated compounds were shown in an in silico setting to be accommodated well within the inhibitor-binding pockets of myeloperoxidase and inducible nitric oxide synthase and anchored mainly through hydrogen-bonding interactions and π-effects. It is therefore plausible to suggest that the previously established anti-inflammatory properties of some Polygala-derived phytochemicals may be due, in part, to the modulation of pro-inflammatory enzyme activities.  相似文献   
30.
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号