首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   8篇
  国内免费   2篇
化学   93篇
晶体学   3篇
力学   16篇
综合类   1篇
数学   23篇
物理学   124篇
  2023年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   9篇
  2013年   13篇
  2012年   14篇
  2011年   23篇
  2010年   15篇
  2009年   18篇
  2008年   11篇
  2007年   20篇
  2006年   16篇
  2005年   7篇
  2004年   9篇
  2003年   2篇
  2002年   10篇
  2001年   9篇
  2000年   3篇
  1999年   4篇
  1998年   13篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1989年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有260条查询结果,搜索用时 46 毫秒
91.
Super-hard and elastic carbon nitride films have been synthesized by using an off-plane double-bend filtered cathodic vacuum arc combined with a radio-frequency nitrogen-ion beam source. A nanoindenter was used to determine the micromechanical properties of the deposited films. X-ray photoelectron spectroscopy was used to study the composition and bonding structure of the deposited films. The influence of nitrogen ion energy on the structure and micromechanical properties of the deposited films was systematically studied. As the nitrogen ion energy is increased, the microhardness, Young’s modulus and elastic recovery also increase, reaching a maximum of 47 GPa, 400 GPa, and 87.5%, respectively, at a nitrogen ion energy of 100 eV. Further increase in nitrogen ion energy results in a decrease in microhardness, Young’s modulus and elastic recovery of the deposited films. The formation of five-membered rings, as indicated by XPS, which causes bending of the basal planes and forms a three-dimensional rigid covalent bond network, contributes to the super-hardness, Young’ s modulus and high elastic recovery of the films deposited at a nitrogen ion energy of 100 eV. Revised version: 29 October 2001 / Accepted: 7 November 2001 / Published online: 2 May 2002  相似文献   
92.
Numerous indole alkaloids such as the iboga- and aspidosperma-type are believed to be biosynthesized via a common hypothetical intermediate, dehydrosecodine. The highly reactive nature of dehydrosecodine-type compounds has hampered their isolation and structural elucidation. In this study, we achieved the first X-ray structural determination of a dehydrosecodine-type compound by integrating synthetic optimization of the reactivity and stabilizing the fragile molecule by encapsulation into a supramolecular host. Formation of a 1 : 1 complex of the dehydrosecodine-type labile guest bearing both vinyl indole and dihydropyridine units with the host was observed. This integrated approach not only provides insights into the biosynthetic conversions but also allows stabilization and storage of the reactive and otherwise short-lived intermediate within the confined hydrophobic cavity.  相似文献   
93.
Quan C  Tay CJ  Chen H 《Optics letters》2007,32(12):1602-1604
We describe a novel method of processing complex phasors in digital holographic interferometry (DHI). Unlike the commonly used digital phase subtraction method that operates on the phase itself, the proposed method operates on the complex phasor instead. Two temporal phase retrieval algorithms are developed in which the complex phasor of each pixel is measured and analyzed as a function of time. The developed algorithms are demonstrated in profile measurement of step heights. Experimental results show that the proposed phase retrieval algorithms for DHI perform well compared with conventional methods.  相似文献   
94.
Raman and coherent anti-Stokes Raman scattering (CARS) microscopies have the potential to aid in detailed longitudinal studies of RNA localization. Here, we evaluate the use of carbon-deuterium and benzonitrile functional group labels as contrast agents for vibrational imaging of hepatitis C virus (HCV) replicon RNA. Dynamic light scattering and atomic force microscopy were used to evaluate the structural consequences of altering HCV subgenomic replicon RNA. Modification with benzonitrile labels caused the replicon RNA tertiary structure to partially unfold. Conversely, deuterium-modified replicon RNA was structurally similar to unmodified replicon RNA. Furthermore, the deuterated replicon RNA provided promising vibrational contrast in Raman imaging experiments. The functional effect of modifying subgenomic HCV replicon RNA was evaluated using the luciferase gene as a genetic reporter of translation. Benzonitrile labeling of the replicon RNA prevented translation in cell-based luciferase assays, while the deuterated replicon RNA retained both translation and replication competency. Thus, while the scattering cross-section for benzonitrile labels was higher, only carbon-deuterium labels proved to be non-perturbative to the function of HCV replicon RNA.  相似文献   
95.
Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block β-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8-b-PDM12 does not only compromise the integrity of the bacterial outer-membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8-b-PDM12 sensitizes carbapenem- and colistin-resistant GNB to multiple antibiotics in vitro and in vivo. The β-peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α-peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.  相似文献   
96.
Liu  L.  Loh  N. H.  Tay  B. Y.  Tor  S. B.  Yin  H. Q.  Qu  X. H. 《Applied Physics A: Materials Science & Processing》2011,103(4):1145-1151
Micro powder injection molding (μPIM) has been developed as a potential technique for mass production of microcomponents in microsystems due to its shaping complexity at low cost, in which sintering is a crucial step to dictate the final properties of the microcomponents. In this paper, final-stage sintering behavior of 316L stainless steel microsize structures prepared by μPIM, φ100 μm and φ60 μm, respectively, was studied. The effect of size reduction in the regime of micrometers on the density of various microsize structures was investigated. Sintering kinetics of the microsize structures of φ100 μm and φ60 μm were studied based on particle level sintering models. It is found that the microsize structures of φ60 μm had higher density than the microsize structures of φ100 μm given the same sintering condition. The results indicate that size reduction in the regime of micrometers facilitated densification of microsize structures. The grain growth mechanism of microsize structures varied with size. Whereas the grain growth of the microsize structures of φ100 μm is governed by surface-diffusion-controlled pore drag, the grain growth of the microsize structures of φ60 μm is controlled by boundary diffusion. During densification, the microsize structures, φ100 μm and φ60 μm, are both controlled by lattice diffusion. The corresponding activation energies are reported in the paper.  相似文献   
97.
A series of alkali metal cyclopentadienides, amides, alkoxides and phenoxides was characterized using NMR spectroscopy in deuterated dimethyl sulfoxide. Deuterated dimethyl sulfoxide showed very good stability and solubility for these compounds. Very nice and well resolved spectra were obtained for most compounds tested. The low cost of the solvent makes it possible to use it for the routine characterization of these alkali salts as the ligands in organometallic synthesis.  相似文献   
98.
The dynamics of structure evolution of nanodiamonds ranging from 22 to 318 atoms of various shapes is studied by density functional tight-binding molecular dynamics. The spherical and cubic nanodiamonds can be transformed into fullerene-like structures upon heating. A number of the transformed fullerenes consist of pentagons and hexagons only. Others contain squares, heptagons, and octagons. One simulated fullerene is an isomer of C(60). The temperature of the transformation depends on the size, shape, and orientation of initial cluster. To be transformed into onion-like fullerenes, the spherical nanodiamonds should have 200 atoms or more, while the cubic ones require 302 atoms or more. The time-resolved energy profiles of all the transformations clearly reveal three-stage transformation character. During the first stage, the energy reduces quickly due to converting sp(3) carbon with dangling bond at the surface into sp(2) one, and the formation of partial sp(2) envelope wrapping the cluster. For the second stage, energy decreases slowly. The remaining interior carbon atoms come to the surface through the hole in the sp(2) envelope, and similar amount of sp(3) and sp(2) atoms coexist. The third stage involves the closure of holes, accompanied by the detachment of C(2) molecules and carbon chains from the edges. The energy decreases relatively fast in this stage. The proposed three-stage transformation pathway holds for all the simulations performed in this work, including those with the instant heating.  相似文献   
99.
Silver nanoparticles bonded to terminal alkynes form stable particles in aqueous solution, produce strong SERS signals for molecular imaging that arise from the carbon-metal bond, and expand the scope of molecules that can be used to stably functionalize plasmonic particles for mammalian cell imaging applications. β-Lactams represent a class of biologically important molecules that can be adapted to SERS studies in this manner.  相似文献   
100.
Pd and bimetallic PdRu nanoparticles supported on Vulcan XC-72 carbon prepared by the microwave-assisted polyol process are examined as electrocatalysts for the electrooxidation of formic acid. The catalysts are characterized by transmission electron microscopy and X-ray diffraction. The Pd and PdRu nanoparticles with sizes of <10 nm display the characteristic diffraction peaks of a Pd face-centered cubic (fcc) crystal structure. It is found that the addition of Ru to Pd/C can decrease the lattice parameter of Pd (fcc) crystal. The electrocatalytic activities of the catalysts are evaluated in sulfuric acid solution containing 1 M formic acid using linear sweeping voltammetry and chronoamperometry. The results show that Pd5Ru1/C displays the best electrocatalytic performance among all catalysts for formic acid electrooxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号