首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   30篇
  国内免费   8篇
化学   1100篇
晶体学   23篇
力学   20篇
数学   91篇
物理学   238篇
  2023年   6篇
  2022年   5篇
  2021年   6篇
  2020年   14篇
  2019年   25篇
  2018年   18篇
  2017年   13篇
  2016年   25篇
  2015年   30篇
  2014年   34篇
  2013年   86篇
  2012年   84篇
  2011年   89篇
  2010年   46篇
  2009年   65篇
  2008年   79篇
  2007年   78篇
  2006年   79篇
  2005年   81篇
  2004年   92篇
  2003年   83篇
  2002年   69篇
  2001年   24篇
  2000年   17篇
  1999年   14篇
  1998年   20篇
  1997年   22篇
  1996年   23篇
  1995年   14篇
  1993年   8篇
  1992年   9篇
  1991年   16篇
  1990年   14篇
  1989年   13篇
  1988年   8篇
  1987年   14篇
  1986年   6篇
  1985年   22篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   7篇
  1977年   11篇
  1976年   8篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
排序方式: 共有1472条查询结果,搜索用时 359 毫秒
61.
A convenient synthesis of peripherally substituted or unsubstituted phthalocyanines having a variety of metals is described. Phthalocyanines can be obtained by heating phthalimides or phthalic anhydride with metal salts, hexamethyldisilazane, a catalytic amount of p-TsOH, and DMF at 150 degrees C.  相似文献   
62.
An assembled compound (BEDT-TTF)2[Mn2Cl5(EtOH)] (1) consisting of two structural lattices of Mn(II)-Cl one-dimensional (1-D) chains and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) stacking layers was synthesized by electrochemical crystallization. Compound 1 crystallized in triclinic space group P-1 (#2) with a=13.1628(5) Å, b=20.3985(9) Å, c=7.4966(3) Å, α=98.3498(8)°, β=104.980(1)°, γ=74.602(2)°, V=1868.3(1) Å3, and Z=2. The 1-D chains and the stacking layers are aligned along the c-axis of the unit cell. The 1-D chain is described as [Mn2Cl5(EtOH)] in which two Mn(II) ions and four Cl ions form a ladder-like chain with Kagomé (cuboidal) sublattices, and the remaining Cl ion and an ethanol molecule cap the edge-positioned Mn(II) ions of the chains. The BEDT-TTF molecules are packed between the Mn-Cl chains (ac-plane), the intermolecular S·S contacts of which are approximately found in the range 3.440(2)-3.599(2) Å. The packing feature of BEDT-TTF molecules is very similar to that of (BEDT-TTF)2ClO4(TCE)0.5 (TCE=1,1,2-trichloroethane) (J. Am. Chem. Soc., 105, 297 (1983)). Regarding the electronic state of each BEDT-TTF molecule, Raman spectroscopic analysis and ESR study revealed the presence of half-valence BEDT-TTF molecules (charge delocalization) in 1. Magnetic measurements clearly demonstrated that the paramagnetic spins on the 1-D chain [Mn2Cl5(EtOH)] arrange antiferromagnetically in the low-temperature region. Additionally, 1 exhibits metallic conductivity in the temperature range 2.0-300 K (σ=21 S cm−1 at 300 K and 1719 S cm−1 at 2.0 K), due to the contribution of the stacked BEDT-TTFs. Consequently, these peculiarities that correspond to antiferromagnetic/metallic conductivity demonstrate the “bi-functionality” of 1.  相似文献   
63.
A simple and sensitive method is described for the determination of biogenic indole compounds adsorbed on cellulose or alumina plates for thin-layer chromatography by room-temperature phosphorimetry. The optimum conditions were investigated for 5-hydroxyindole-3-acetic acid and indole-3-acetic acid. The compounds are spotted on the plates, which are then sprayed successively with sodium citrate or sodium acetate, and sodiu iodide solutions. The plates are dried completely under a stream of dry nitrogen, and immediately dipped in molten paraffin. The phosphorescence is stable for at least 3 h even in moist air. The limits of detection for nine biogenic indole compounds tested are between 2 and 300 pmol per sample spot.  相似文献   
64.
Chiral quaternary ammonium phenoxides were readily prepared from commercially available cinchona alkaloids and proved to be useful new asymmetric organocatalysts. Among various chiral quaternary ammonium phenoxides, a cinchonidine‐derived catalyst that bears both a sterically hindered N1‐9‐anthracenylmethyl group and a strongly electron withdrawing 9‐O‐3,5‐bis(trifluoromethyl)benzyl group were found to be highly effective for the Michael addition of ketene silyl acetals (derived from phenyl carboxylates) and α,β‐unsaturated ketones followed by lactonization. Optically active 3,4‐dihydropyran‐2‐one derivatives were obtained in high yields with excellent control of enantio‐ and diastereoselectivity. This catalyst can be handled in air and stored at room temperature in a sealed bottle without decomposition for at least one month.  相似文献   
65.
The polymerization of di-n-butyl itaconate (DBI) intiated with AIBN was kinetically investigated in benezene. The polymerization rate (Rp) was expressed by: Rp = k[AIBN]0.5[DBI]1.7. The polymerization showed a considerably low overall activation energy of 15.3 kcal/mol. The initiator efficiency of AIBN in this system decreased with increasing DBI concentration, ranging from 0.34 to 0.55°C, which is ascribable to viscosity effect due to the monomer. From an ESR study, the polymerization system was found to involve two kinds of persistent radicals, namely, primary propagating ( III ) and propagating ( I ) radicals. The relative concentration of III to I increased with decreasing monomer concentration. Azo-nitrile initiators such as AVN and ACN similarly produced two persistent radicals, while MAIB, DBPO, and PBO yielded only propagating radical I as persistent. The MAIB-initiated polymerization of DBI was also performed in benzene. Similar kinetic features were observed, that is, a higher dependence of Rp on the DBI concentration and a low overall activation energy (14.4 kcal/mol). The following rate equation was obtained at 50°C:Rp = k[MAIB]0.5[DBI]1.6. The initiator efficiency of MAIB decreased with increasing DBI concentration, ranging from 0.32 to 0.53 at 50°C. The concentration of propagating radical I was determined by ESR at 50 and 61°C, from which kp and kt were estimated. The kp value increased with increasing monomer concentration, while the kt one decreased with the DBI concentration. These values are much lower compared with those of MMA.  相似文献   
66.
Summary The covalent bonding of l-lactate oxidase (no E.C.) to cross-linked copolymers of chitosan (Chitopearl) using the glutaraldehyde method is described and applied to the determination of l-lactate in serums of diseased and normal animals. The bioreactor packing of the immobilized enzyme is stable for at least 4 months and can be continuously used for the rapid and simple determination of l-lactate. The reduction current of pyruvate, corresponding to the product of enzymatic reaction, is determined by differential pulse polarography. The reproducibility (RSD) for 10 mol/l l-lactate is 0.78% (n=6) and the detection limit is 0.62 mol/l (k=2, confidence level 97.72%).  相似文献   
67.
The 5H-pyrido[2,3-a]phenoxazin-5-one derivatives and 5H-pyrido[3,2-a]phenoxazin-5-one derivatives were prepared by the condensation of substituted 2-aminophenols with 6,7-dibromo-5,8-quinolinequinone followed by dehalogenation in the presence of sodium hydrosulfite dissolved in aqueous pyridine under a nitrogen atmosphere.  相似文献   
68.
Heterometallic linear tetramers [Mn(5-R-saltmen)Ni(pao)(bpy)(2)](2)(ClO(4))(4) (5-R-saltmen(2-) = N,N'-1,1,2,2-tetramethylethylene bis(5-R-salicylideneiminate); pao(-) = pyridine-2-aldoximate; bpy = 2,2'-bipyridine, R = H, 1; Cl, 2; Br, 3; MeO, 4) have been synthesized and structurally characterized. These compounds exhibit a [Ni(II)-NO-Mn(III)-(O)(2)-Mn(III)-ON-Ni(II)] skeleton where -ON- is an oximate bridge between Mn(III) and Ni(II) ions and -(O)(2)- is a bi-phenolate bridge between Mn(III) ions. These tetramers can be seen as oligomeric units of the heterometallic Mn(III)(2)-Ni(II) chain observed in a family of single-chain magnets (Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. Miyasaka, H.; Clérac, R.; Mizushima, K.; Sugiura, K.; Yamashita, M.; Wernsdorfer, W.; Coulon, C. Inorg. Chem. 2003, 42, 8203.). Magnetic measurements on these tetramers confirm the nature of the magnetic interactions reported for the Mn(III)(2)-Ni(II) chains: a strong antiferromagnetic Mn(III)/Ni(II) coupling via the oximate bridge (J(Ni-Mn) ranges from -23.7 to -26.1 K) and a weak ferromagnetic Mn(III)/Mn(III) coupling through the bi-phenolate bridge (J(Mn-Mn) ranges from +0.4 to +0.9 K). These magnetic interactions lead to tetramers with an S = 2 ground state.  相似文献   
69.
Mn(III)-Ni(II)-Mn(III) linear-type trinuclear complexes bridged by oximate groups were selectively synthesized by the assembly reaction of [Mn2(5-Rsaltmen)2(H2O)2](ClO4)2 (5-Rsaltmen2-=N,N'-(1,1,2,2-tetramethylethylene) bis(5-R-salicylideneiminate); R=Cl, Br) with [Ni(pao)2(phen)] (pao-=pyridine-2-aldoximate; phen=1,10-phenanthroline) in methanol/water: [Mn2(5-Rsaltmen)2Ni(pao)2(phen)](ClO4)2 (R=Cl, 1; R=Br, 2). Structural analysis revealed that the [Mn(III)-ON-Ni(II)-NO-Mn(III)] skeleton of these trimers is in every respect similar to the repeating unit found in the previously reported series of 1D materials [Mn2(saltmen)2Ni(pao)2(L1)2](A)(2) (L(1)=pyridine, 4-picoline, 4-tert-butylpyridine, N-methylimidazole; A=ClO4-, BF4-, PF6-, ReO4-). Recently, these 1D compounds have attracted a great deal of attention for their magnetic properties, since they exhibit slow relaxation of the magnetization (also called single-chain magnet (SCM) behavior). This unique magnetic behavior was explained in the framework of Glauber's theory, generalized for chains of ferromagnetically coupled anisotropic spins. Thus, in these 1D compounds, the [Mn(III)-ON-Ni(II)-NO-Mn(III)] unit was considered as an S(T)=3 anisotropic spin. Direct-current magnetic measurements on 1 and 2 confirm their S(T)=3 ground state and strong uniaxial anisotropy (D/k(B) approximately -2.4 K), in excellent agreement with the magnetic characteristic deduced in the study on the SCM series. The ac magnetic susceptibility of these trimers is strongly frequency-dependent and characteristic of single-molecule magnet (SMM) behavior. The relaxation time tau shows a thermally activated (Arrhenius) behavior with tau0 approximately 1x10(-7) s and Delta(eff)/k(B) approximately 18 K. The effective energy barrier for reversal of the magnetization Delta(eff) is consistent with the theoretical value (21 K) estimated from |D| S2T. The present results reinforce consistently the interpretation of the SCM behavior observed in the [Mn2(saltmen)2Ni(pao)2(L1)2](A)2 series and opens new perspectives to design single-chain magnets.  相似文献   
70.
SrCu2(PO4)2 was prepared by the solid-state method at 1153 K. Its structure was solved by direct methods in the space group Pccn (No. 56) with Z = 8 from synchrotron X-ray powder diffraction data measured at room temperature. Structure parameters were then refined by the Rietveld method to obtain the lattice parameters, a = 7.94217(8) A, b = 15.36918(14) A, and c = 10.37036(10) A. SrCu2(PO4)2 presents a new structure type and is built up from Sr2O16 and Cu1Cu2O8 units with Cu1...Cu2 = 3.256 A. The magnetic properties of SrCu2(PO4)2 were investigated by magnetic susceptibility, magnetization up to 65 T, Cu nuclear quadrupole resonance (NQR), electron-spin resonance, and specific heat measurements. With spin-dimer analysis, it was shown that the two strongest spin-exchange interactions between Cu sites result from the Cu1-O...O-Cu2 and Cu2-O...O-Cu2 super-superexchange paths with Cu1...Cu2 = 5.861 A and Cu2...Cu2 = 5.251 A, and the superexchange associated with the structural dimer Cu1Cu2O8 is negligible. The magnetic susceptibility data were analyzed in terms of a linear four-spin cluster model, Cu1-Cu2-Cu2-Cu1 with -2J(1)/kB = 82.4 K for Cu1-Cu2 and -2J(2)/k(B) = 59 K for Cu2-Cu2. A spin gap deduced from this model (Delta/kB = 63 K) is in agreement with that obtained from the Cu NQR data (Delta/kB = 65 K). A one-half magnetization plateau was observed between approximately 50 and 63 T at 1.3 K. Specific heat data show that SrCu2(PO4)2 does not undergo a long-range magnetic ordering down to 0.45 K. SrCu2(PO4)2 melts incongruently at 1189 K. We also report its vibrational properties studied with Raman spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号