首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   5篇
化学   126篇
力学   3篇
数学   1篇
物理学   8篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   14篇
  2010年   4篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   9篇
  2005年   10篇
  2004年   12篇
  2003年   8篇
  2002年   13篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
排序方式: 共有138条查询结果,搜索用时 0 毫秒
21.
22.
In this study, controlled amount of dangling ends is introduced to the two series of poly(ethylene glycol)‐based hydrogel networks with three and four crosslinking functionality by using click chemistry. The structure of the gels with regulated defect percentage is confirmed by comparing the results of low‐field NMR characterization and Monte Carlo simulation. The mechanical properties of these gels were characterized by tensile stress–strain behaviors of the gels, and the results are analyzed by Gent model and Mooney–Rivlin model. The shear modulus of the swollen gels is found to be dependent on the functionality of the network, and decreases with the defect percentage. Furthermore, the value of shear modulus well obeys the Phantom model for all the gels with varied percentage of the defects. The maximum extension ratio, obtained from the fitting of Gent model, is also found to be dependent on the functionality of the network, and does not change with the defect percentage, except at very high defect percentage. The value of the maximum extension ratio is between that predicted from Phantom model and the Affine model. This indicates that at the large deformation, the fluctuation of the crosslinking points is suppressed for some extend but still exists. Polymer volume fractions at various defect percentages obtained from prediction of Flory–Rehner model are found to be in well agreement with the swelling experiment. All these results indicate that click chemistry is a powerful method to regulate the network structure and mechanical properties of the gels. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1227–1236  相似文献   
23.
The time evolution of the density fluctuation of molecules is investigated by dynamic light scattering in six neat fluids in supercritical states. This study is the first to compare the dynamics of density inhomogeneity between hydrogen- and non-hydrogen-bonded fluids. Supercritical methanol and ethanol are used as hydrogen-bonded fluids, whereas four non-hydrogen-bonded fluids were used: CHF(3), C(2)H(4), CO(2), and Xe. We measure the time correlation function of the density fluctuation of each fluid at the same reduced temperatures and densities and investigate the relationship between the dynamic and static density inhomogeneities of those supercritical fluids. In all cases, the profile of the time correlation function of the density fluctuation is characterized by a single-exponential function, whose decay is responsible for the dynamics characterized by hydrodynamic conditions. We obtain correlation times from the time correlation function and discuss dynamic and static inhomogeneity using the Kawasaki theory and the Landau-Placzek theory. While the correlation times in the six fluids show noncoincidence, those values agree well with each other except for the supercritical alcohols when scaled to a dimensionless parameter. Although the principle of corresponding state is observed in the non-hydrogen-bonded fluids, both the supercritical methanol and ethanol deviate from that principle. This deviation is attributed to the presence of hydrogen bonding among alcohol molecules at high temperature and low density. The average cluster size of each fluid is estimated under the same thermodynamic conditions, and it is shown that the clusters of supercritical alcohols are on average 1.5-1.7 times larger than those of the four non-hydrogen-bonded fluids. Moreover, the thermal diffusivity of each neat fluid is obtained over wide ranges of density and temperature.  相似文献   
24.
Amao Y  Komori T 《Talanta》2005,66(4):976-981
An optical CO2 sensor based on the overlay of the CO2 induced absorbance change of pH indicator dye α-naphtholphthalein in poly(isobutyl methacrylate) (polyIBM) layer with the fluorescence of tetraphenylporphyrin (TPP) in polystyrene layer is developed. The observed luminescence intensity from TPP at 655 nm increased with increasing the CO2 concentration. The ratio I100/I0 value of the sensing film consisting of α-naphtholphthalein in polyIBM and TPP in polystyrene layer, where I0 and I100 represent the detected luminescence intensities from a layer exposed to argon and CO2 saturated conditions, respectively, that the sensitivity of the sensor, is estimated to be 192. The response and recovery times of the sensing film are less than 6.0 s for switching from argon to CO2, and for switching from CO2 to argon. The signal changes are fully reversible and no hysterisis is observed during the measurements. The highly sensitive optical CO2 sensor based on fluorescence intensity changes of TPP due to the absorption change of α-naphtholphthalein in polyIBM layer with CO2 is achieved.  相似文献   
25.
A novel, highly active immobilized ruthenium catalyst, which can be successfully used in oxidation of alcohols to aldehydes and ketones, has been developed. In contrast to most immobilized catalysts, the Ru catalyst has activity that is higher than that of the original non-immobilized catalyst. In a batch system, the Ru catalyst was recovered and reused several times without loss of activity. The catalyst was also applied to a flow system, in which excellent conversions and yields were demonstrated. No leaching of Ru was observed in both cases.  相似文献   
26.
The absorption and emission spectra of the Pt(II) complexes containing N wedge C wedge N-coordinating tridentate ligands, platinum(II) 1,3-di(2-pyridyl)benzene chloride [Pt(dpb)Cl] and platinum(II) 3,5-di(2-pyridyl)toluene chloride [Pt(dpt)Cl], together with their corresponding free ligands, 1,3-di(2-pyridyl)benzene (dpbH) and 3,5-di(2-pyridyl)toluene (dptH), have been analyzed by density functional theory (DFT) for the ground state and time-dependent DFT (TDDFT) for the excited states. T(1)(A(1)) and S(1)(B(2)) of the complexes (in C(2)(v) symmetry) were assigned on the basis of the calculated excitation energies as well as comparison of the experimental spectroscopic properties and the calculated states' characteristics. The calculated excitation energies for T(1) and S(1) of the complexes as well as those for T(1) of the free ligands were in good agreement with their observed values within 600 cm(-1). The d-pi* characters of the excited states were evaluated from the change in electron densities between the ground and excited states by Mulliken population analysis; values of 25% for T(1) and 32% for S(1) were obtained for both complexes. The calculated values of d-pi* character were found to be consistent with the reported emission lifetimes as well as the observed emission energy shifts from the corresponding free ligands. Most spectroscopic properties of the complexes and the free ligands, which include solvatochromic shift, Stokes shifts, methyl substitution shifts, and emission spectra profiles, were well explained from the calculation results.  相似文献   
27.
Introduction of soft filler in a hard body, which is one of the common toughening methods of hard polymeric materials, was applied for further toughening of robust double network (DN) hydrogels composed of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) gels (PAMPS gels) as the first component and polyacrylamide (PAAm) as the second component. The fracture energy of the DN gels with the void structure (called void‐DN gels) became twice when the volume fraction of void was 1–3 vol % and the void diameter was much larger than the Flory radius of the PAAm chains. Such toughening was induced by wider range of internal fracture of the PAMPS network derived from partial stress concentration near void structure. Considering the mechanical tests and the dynamic light scattering results, it is implied that the absence of the load‐bearing PAAm structure inside the void is important for the toughening. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1246–1254, 2011  相似文献   
28.
To study the atomistic behavior of the phosphoric ester molecule on the nascent Fe surface under boundary lubrication conditions, we adopted a hybrid tight-binding quantum chemical molecular dynamics method. First, we investigated chemical interactions between phosphoric ester and the nascent Fe surface. Phosphoric ester was shown to interact with the nascent Fe surface, forming both covalent and ionic bonds. Formation and dissociation dynamics of covalent bonds during tribochemical reaction was clearly observed during the simulation. The effect of friction condition on the tribochemical reaction dynamics was then studied, and it was indicated that friction would influence the formation and the dissociation of covalent bonds. By using a hybrid tight-binding quantum chemical molecular dynamics method, we obtained insights on initial tribochemical reaction processes for the formation of tribofilm from the phosphoric ester molecule on the nascent Fe surface.  相似文献   
29.
30.
We investigated the influence of a nanometer scale film structure of a tribofilm generated from zinc dialkyldithiophosphate (ZDDP) anti-wear additive on its mechanical properties using a combined molecular dynamics (MD) and finite element (FE) method. The frictional behavior of an interface between a native iron oxide layer on steel surface and zinc metaphosphate - regarded as a model material of ZDDP tribofilm - was firstly studied using the MD method. The results showed that the iron atoms in the oxide layer diffused into the phosphate layer during the friction process. The zinc atoms in the phosphate layer also diffused into the oxide layer. Significant interdiffusion of iron and zinc atoms was observed with increasing simulation time. Thus, metallic phosphate with a gradient composition of iron and zinc atoms was formed on the phosphate/oxide interface. We then constructed an axisymmetric nanoindentation simulation model from the MD-derived structures at a certain simulation time and carried out a FE calculation. As a result, we found that the rubbed ZDDP tribofilm, including the phosphate with the gradient composition of metallic atoms, showed larger contact stiffness and hardness. The combined MD/FE simulation indicates that the tribofilm becomes stiffer and harder due to the interdiffusion of iron and zinc atoms on the tribofilm/oxide interface. We have found that the gradient composition formation in ZDDP tribofilm during friction process influences on its mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号