Rice husk, as a green and cheap reagent, can be used for the promotion of the synthesis of 12-aryl -8, 9,10,12-tetrahydrobenzo[α] xanthen-11-one derivatives (ATXOs) via three-component reaction of aldehydes, 2-naphthol and 5,5-dimethyl-1,3-cyclohexadione (dimedone) under solvent-free conditions. This catalyst can also be used for the preparation of quinoxaline derivatives in a mixture of H2O and CH3CN at 50 °C. The present methodology offers several advantages such as high yields, simple procedure, low cost, short reaction times, mild reaction conditions and use of a green, cheap and reusable catalyst. 相似文献
A novel method for the rapid extraction and determination of a ppt level of Pb2+ and Cu2+ ions using partial silylated MCM-41 modified by a new salophen and inductively coupled plasma atomic emission spectrometry (ICP-AES) is introduced. The preconcentration factor of the method is 500, and the detection limits of Pb2+ and Cu2+ are 335 and 34 ng L(-1), respectively. The time and efficiency of extraction, the pH and flow rate, the type and minimum amount of acid for stripping of Pb2+ and Cu2+ from modified MCM-41 and the break-through volume were investigated. The maximum capacity of 4 mg of silylated MCM-41 modified by salophen used was found to be 150 +/- 4 and 117 +/- 3 microg of Pb2+ and Cu2+, respectively. 相似文献
In this article, we describe the influence of structure on biological behavior of amino acid-Pd complex and compare it with oxalipalladium. A new water-soluble oxalipalladium analog with formula of [Pd(DACH)(isopentylgly)](NO3), where DACH is 1R,2R-diaminocyclohexane, has been synthesized and characterized by elemental analysis, conductivity measurements, IR, UV–Vis, and 1H NMR spectroscopies. The interactions of oxalipalladium and its amino acid derivative with highly polymerized calf-thymus DNA have been extensively studied by spectroscopic methods. The high binding constants of oxalipalladium (0.38 × 104 M?1) and new amino acid-Pd complex (0.65 × 104 M?1) were determined using absorption measurements. Also circular dichroism (CD) studies show that Pd complex causes more disturbances on DNA structure rather than oxalipalladium. The experimental results proposed that [Pd(DACH)(isopentylgly)](NO3) is bound to DNA by groove-binding mode as well as partially covalent interaction, while oxalate analog binds covalently to DNA after hydrolysis. Interaction of the two metal derivative complexes was studied by molecular docking simulation. The results showed that amino acid-Pd complex has higher negative docking energy and higher tendency for interaction with DNA, and exert more structural change on DNA. Finally, the anticancer and growth inhibitory activities of synthesized complexes were investigated against human colon cancer cell line of HCT116 after 24 h incubation time using MTT assay. Results show that the complex [Pd(DACH)(isopentylgly)](NO3) showed enhanced anticancer and growth inhibitory activities against human colon can cell line HCT116. 相似文献
Melamine trisulfonic acid (MTSA) was easily prepared by the reaction of melamine with neat chlorosulfonic acid at room temperature. This reagent can be used as an efficient catalyst for the acetylation of alcohols, phenols, and amines with Ac2O under mild and completely heterogeneous reaction conditions. 相似文献
Attempts are being made to develop an ideal wound dressing with excellent biomechanical and biological properties. Here, a thermos-responsive hydrogel is fabricated using chitosan (CTS) with various concentrations (1%, 2.5%, and 5% w/v) of solubilized placental extracellular matrix (ECM) and 20% β-glycerophosphate to optimize a smart wound dressing hydrogel with improved biological behavior. The thermo-responsive CTS (TCTS) alone or loaded with ECMs (ECM-TCTS) demonstrate uniform morphology using SEM. TCTS and ECM1%-TCTS and ECM2.5%-TCTS show a gelation time of 5 min at 37 °C, while no gel formation is observed at 4 and 25 °C. ECM5%-TCTS forms gel at both 25 and 37 °C. The degradation and swelling ratios increase as the ECM content of the hydrogel increase. All the constructs show excellent biocompatibility in vitro and in vivo, however, the hydrogels with a higher concentration of ECM demonstrate better cell adhesion for fibroblast cells and induce expression of angiogenic factors (VEGF and VEGFR) from HUVEC. Only the ECM5%-TCTS has antibacterial activity against Acinetobacter baumannii ATCC 19606. The data obtained from the current study suggest the ECM2.5%-TCTS as an optimized smart biomimetic wound dressing with improved angiogenic properties now promises to proceed with pre-clinical and clinical investigations. 相似文献
Anticancer character of gold cluster has been indicated through its free radical scavenging properties. This is in contrast to its free radical promoting ability suggested by other workers. Here, we address this controversy by probing the stabilizing effects of Au3 cluster on RO• vs its impacts on RO–H bond dissociation enthalpy, at B3LYP/ LACVP+* level (R═H, methyl, ethyl, n‐propyl, i‐propyl, n‐butyl, t‐butyl, and phenyl). In the presence of Au3 cluster, bond dissociation enthalpy of O–H bond and the spin density at the RO• oxygen are reduced dramatically. These are clear evidences for both the Au3 facilitation of the RO–H bond breakage and its scavenging of RO• radical. Since O–Au anchoring bond is responsible for the interaction of Au3 cluster and ROH (or RO•), its nature was interpreted by means of the quantum theory of atoms in molecules and the natural bond orbital. The results indicate that O–Au bond is stronger and has more covalent character in RO•–Au3 than in ROH–Au3. The interaction of Au3 cluster with RO• is 1.5 to 3 times more than that with ROH. As a result, gold cluster scavenging property appears more prominent than its free radical initiation activity. 相似文献
4-Nitroaniline was electropolymerized in a weakly alkaline medium, and the resulting poly(4-nitroaniline) (P4-NA)) was used to fabricate - by electrospinning - a nanofiber consisting of P4-NA and poly(vinyl alcohol) (PVA). The PVA fraction was then dissolved in hot water and this causes the porosity of electrospun nanofiber to be largely enhanced. The resulting nanofiber was utilized as a sorbent for solid phase microextraction of the model organophosphorus pesticides diazinon and chloropyrifos from aqueous media. The extracted analytes were then analyzed by corona discharge ion mobility spectrometry (CD-IMS). Under the optimized conditions, the limits of detection (at S/N?=?3; for n?=?10) are 0.4 and 0.6 ng mL?1 for diazinon and chloropyrifos, respectively. The relative standard deviations at the levels of 25, 50 and 100 ng mL?1 (for n?=?3) ranged from 4.0–12.3% (both intra-day and inter-day). Eventually, the method was used to analyze different water samples, including spiked drinking water, sea water, lagoon water, and groundwater sample in the proximity of rice fields, and in two juice samples. Recoveries ranged between 82 and 102%.
Graphical abstract An electrospun nanofiber consisting of highly porous poly(4-nitroaniline) was synthesized and used as a sorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples prior to quantitation by corona discharge ion mobility spectrometry.
Nanogels represent a significant innovation in the fields of nanotechnology and biomedical engineering, combining the properties of hydrogels and nanoparticles to create versatile platforms for drug delivery, tissue engineering, bioimaging, and other biomedical applications. These nanoscale hydrogels, typically ranging from 10 to 1000 nm, possess unique characteristics such as high water content, biocompatibility, and the ability to encapsulate both hydrophilic and hydrophobic molecules. The review explores the synthesis, structural configurations, and stimuli-responsive nature of nanogels, highlighting their adaptability for targeted drug delivery, including across challenging barriers like the blood–brain barrier. Furthermore, the paper delves into the biomedical applications of nanogels, particularly in drug delivery systems, tissue engineering, and bioimaging, demonstrating their potential to revolutionize these fields. Despite the promising preclinical results, challenges remain in translating these technologies into clinical practice, including issues related to stability, scalability, and regulatory approval. The review concludes by discussing future perspectives, emphasizing the need for further research to optimize the properties and applications of nanogels, ultimately aiming to enhance their efficacy and safety in clinical settings. 相似文献