首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   15篇
  国内免费   2篇
化学   191篇
晶体学   3篇
力学   5篇
数学   18篇
物理学   57篇
  2023年   5篇
  2022年   2篇
  2021年   6篇
  2020年   11篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   10篇
  2015年   14篇
  2014年   9篇
  2013年   24篇
  2012年   15篇
  2011年   18篇
  2010年   15篇
  2009年   9篇
  2008年   20篇
  2007年   17篇
  2006年   15篇
  2005年   14篇
  2004年   15篇
  2003年   13篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有274条查询结果,搜索用时 62 毫秒
111.
Pseudo‐octahedral MII6L4 capsules result from the subcomponent self‐assembly of 2‐formylphenanthroline, threefold‐symmetric triamines, and octahedral metal ions. Whereas neutral tetrahedral guests and most of the anions investigated were observed to bind within the central cavity, tetraphenylborate anions bound on the outside, with one phenyl ring pointing into the cavity. This binding configuration is promoted by the complementary arrangement of the phenyl rings of the intercalated guest between the phenanthroline units of the host. The peripherally bound, rapidly exchanging tetraphenylborate anions were found to template an otherwise inaccessible capsular structure in a manner usually associated with slow‐exchanging, centrally bound agents. Once formed, this cage was able to bind guests in its central cavity.  相似文献   
112.
The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.  相似文献   
113.
Polycrystalline halogen-bonded assemblies fabricated by physical vapor deposition (PVD) exhibit controllable morphologies and microstructures. Although the solid-state packing may vary going from a solution crystal growth process (used for chromophore single-crystal determination) to a vapor-phase deposition process (used for PVD film fabrication), the corresponding film microstructures are independent of the substrate surface chemistry.  相似文献   
114.
The sensitized triplet-triplet annihilation (TTA) of 9,10-dimethylanthracene (DMA) upon selective excitation of [Ru(dmb)3]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine) at 514.5 nm in dimethylformamide (DMF) resulted in upconverted and downconverted DMA excimer photoluminescence. The triplet excited state of [Ru(dmb)3]2+ is efficiently quenched by 11 mM DMA in DMF resulting in photon upconversion but no excimer formation. The bimolecular quenching constant of the dynamic quenching process is 1.4 x 109 M-1 s-1. At 90 mM DMA, both upconversion and downconversion processes are readily observed in aerated DMF solutions. The TTA process was confirmed by the quadratic dependence of the upconverted and downconverted emission emanating from the entire integrated photoluminescence profile (400-800 nm) of DMA measured with respect to incident light power. Time-resolved emission spectra of [Ru(dmb)3]2+ and 90 mM DMA in both aerated and deaerated DMF clearly illustrates the time-delayed nature of both types of singlet-state emission, which interestingly shows similar decay kinetics on the order of 14 mus. The emission quantum yields (Phi) measured using relative actinometry increased with increasing DMA concentrations, reaching a plateau at 3.0 mM DMA (Phi = 4.0%), while at 90 mM DMA, the overall quantum yield diminished to 0.5%. The dominant process occurring at 3.0 mM DMA is upconversion from the singlet excited state of DMA, whereas at 90 mM DMA, both upconversion and excimeric emission are observed in almost equal portions, thereby resulting in an overall broad-band visible light-emission profile.  相似文献   
115.
The La + O and La + O 2 chemiionization reactions have been investigated with quantum chemical methods. For La + O 2(X (3)Sigma g) and La + O 2(a (1)Delta g), the chemiionization reaction La + O 2 --> LaO 2 (+) + e (-) has been shown to be endothermic and does not contribute to the experimental chemielectron spectra. For the La + O 2(X (3)Sigma g) reaction conditions, chemielectrons are produced by La + O 2 --> LaO + O, followed by La + O --> LaO (+) + e (-). This is supported by the same chemielectron band, arising from La + O --> LaO (+) + e (-), being observed from both the La + O( (3)P) and La + O 2(X (3)Sigma g) reaction conditions. For La + O 2(a (1)Delta g), a chemielectron band with higher electron kinetic energy than that obtained from La + O 2(X (3)Sigma g) is observed. This is attributed to production of O( (1)D) from the reaction La + O 2(a (1)Delta g) --> LaO + O( (1)D), followed by chemiionization via the reaction La + O( (1)D) --> LaO (+) + e (-). Potential energy curves are computed for a number of states of LaO, LaO* and LaO (+) to establish mechanisms for the observed La + O --> LaO (+) + e (-) chemiionization reactions.  相似文献   
116.
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15N dynamic nuclear polarization surface enhanced solid‐state NMR spectroscopy (DNP SENS) to understand graft–host interactions and effects imposed by the metal–organic framework (MOF) host on peptide conformations in a peptide‐functionalized MOF. Focusing on two grafts typified by MIL‐68‐proline ( ‐Pro ) and MIL‐68‐glycine‐proline ( ‐Gly‐Pro ), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide‐functionalized MOFs. The calculated chemical shifts of selected MIL‐68‐NH‐ Pro and MIL‐68‐NH‐ Gly‐Pro conformations are in a good agreement with the experimentally obtained 15N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host–guest interactions.  相似文献   
117.
118.
119.
11C-radiolabeling technique is applied to investigate methanol decomposition on copper oxide modified SBA-15. Nitrogen physisorption, XRD, FTIR, UV-vis and TPR techniques are used for catalyst characterization. Selective adsorption coverage of the catalytic active sites with 11C- and 12C-methanol molecules is carried out and the products of their conversion are followed. The mechanism of methyl formate, methylal and CO2 formation from methanol is discussed.  相似文献   
120.
The state of the iron oxide nanoparticles, supported on ultradispersed diamond (UDD) powders is studied by X-ray diffraction, nitrogen physisorption, temperature-programmed reduction, FTIR and Mössbauer spectroscopy. Methanol decomposition to hydrogen and CO is used as a catalytic test. The peculiarities of the iron oxide species strongly depend on the detonation procedure used for the UDD powders preparation as well as on the iron modification procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号