首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   45篇
  国内免费   1篇
化学   469篇
力学   4篇
数学   41篇
物理学   33篇
  2023年   8篇
  2022年   13篇
  2021年   14篇
  2020年   29篇
  2019年   29篇
  2018年   13篇
  2017年   5篇
  2016年   24篇
  2015年   21篇
  2014年   39篇
  2013年   22篇
  2012年   50篇
  2011年   40篇
  2010年   32篇
  2009年   26篇
  2008年   32篇
  2007年   24篇
  2006年   24篇
  2005年   27篇
  2004年   17篇
  2003年   10篇
  2002年   14篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
11.

Isotopes of hydrogen (3H, 2H) and oxygen (18O) are perfect candidates for groundwater tracers. A survey of isotopic composition of 34 groundwater samples and one Lake from Vojvodina region (Serbia) is presented here. Tritium activity concentration and stable isotope composition (δ2H, δ18O), as well as deuterium excess, were determined. The groundwater samples lie on the groundwater regression line. Minor deviations and a few lower deuterium excess values indicate waters recharged in a different climate regime and subjected to evaporation, respectively. According to the obtained results, most of the analyzed groundwater can be characterized as modern waters, recharged mostly from precipitation.

  相似文献   
12.
Benzoperylene derivatives with two angularly attached dicarboxylic imide rings, which were prepared by the Diels–Alder‐Reaction, exhibit strong fluorescence and their free peri positions allow either control of the UV/Vis spectra through their substituents or form anchor positions for the attachment of functional units. The angular chromophore 3 may be used both for fluorescent labeling such as for primary amines or enzymes or as building blocks for more complex assemblies where they may act as energy donors for FRET or electron acceptors in PET such as for photovoltaic solar cells.  相似文献   
13.
The biochemical transport and binding of nicotine depends on the hydrogen bonding between water and binding site residues to the pyridine ring and the protonated pyrrolidinium ring. To test the independence of these two moderately separated hydrogen-bonding sites, we have calculated the structures of clusters of protonated nicotine with water and a bicarbonate anion, benzene, indole, or a second water molecule. Unprotonated nicotine-water clusters have also been studied for contrast. The potential energy surfaces are first explored with an intermolecular anisotropic atom-atom model potential. Full geometry optimizations are then carried out using density functional theory to include nonadditive terms in the interaction energies. The presence of the charge on the pyrrolidine nitrogen removes the conventional hydrogen-bonding site on the pyridine ring. The hydrogen-bond ability of this site is nearly recovered when the protonated pyrrolidinium ring is bound to a bicarbonate anion, whereas its interaction with benzene shows a much smaller effect. Indole appears to partially restore the hydrogen-bond ability of the pyridine nitrogen, although indole and benzene both pi-bond to the pyrrolidinium ring. A second hydrogen-bonding water produces a significant conformational distortion of the nicotine. This demonstrates the limitations of the conventional qualitative predictions of hydrogen bonding based on the independence of molecular fragments. It also provides benchmarks for the development of atomistic modeling of biochemical systems.  相似文献   
14.
15.
The selective hydrolysis of proteins by non-enzymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology and proteomics. Herein, we report that discrete hafnium metal-oxo cluster [Hf18O10(OH)26(SO4)13⋅(H2O)33] ( Hf18 ), which is centred by the same hexamer motif found in many MOFs, acts as a heterogeneous catalyst for the efficient hydrolysis of horse heart myoglobin (HHM) in low buffer concentrations. Among 154 amino acids present in the sequence of HHM, strictly selective cleavage at only 6 solvent accessible aspartate residues was observed. Mechanistic experiments suggest that the hydrolytic activity is likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic surface of Hf18 . X-ray scattering and ESI-MS revealed that Hf18 is completely insoluble in these conditions, confirming the HHM hydrolysis is caused by a heterogeneous reaction of the solid Hf18 cluster, and not from smaller, soluble Hf species that could leach into solution.  相似文献   
16.
Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.  相似文献   
17.
Cover Image     
The novel heteronuclear complexes [{cis-PtCl (NH3)(μ-pyrazine)ZnCl (terpy)}](ClO4)2 (Pt-L1-Zn) and [{cis-PtCl (NH3)(μ-4,4′-bipyridyl)ZnCl (terpy)}](ClO4)2 (Pt-L2-Zn) (where terpy = 2,2′:6′,2′′-terpyridine, L1 = pyrazine, L2 = 4,4′-bipyridyl) were synthesized and characterized. The pKa values were determined, and based on them it was established that the π-acceptor ability of the pyrazine bridging ligand is more affective on lower pKa values. The kinetic measurements of the substitution reactions with biologically relevant ligands, such as guanosine-5′-monophosphate (5′-GMP), inosine-5′-monophosphate (5′-IMP) and glutathione (GSH), were studied at pH 7.4. The reactions were followed under pseudo-first-order conditions by UV–Vis spectrophotometry. The order of reactivity of the investigated biomolecules for the first reaction is 5′-GMP > 5′-IMP > GSH, while for the second is 5′-IMP > GSH. Pt-L1-Zn complex is more reactive than Pt-L2-Zn. The cytotoxic activity of heteronuclear Pt-L1-Zn and Pt-L2-Zn complexes was determined on human colorectal cancer cell line (HCT-116) and human breast cancer cell line (MDA-MB-231). Both complexes significantly reduced cell viability on tested cell lines and exerted significant cytotoxic effects, with better effect on HCT-116 cells than cisplatin, especially after 72 hr (IC50 < 0.52 μM). The Pt-L2-Zn complex showed higher activity against human breast cancer cells (MDA-MB-231) than cisplatin after 72 hr. The higher reactivity toward DNA constituent and significant cytotoxic activity may be attributed to the different geometry, Lewis acidity of different metal centers, as well as, to choice of bridging ligands.  相似文献   
18.
A tertiary hydroxy group α to a carboxyl moiety comprises a key structural motif in many bioactive substances. With the herein presented metal‐free rearrangement of imides triggered by hypervalent λ3‐iodane, an easy and selective way to gain access to such a compound class, namely α,α‐disubstituted‐α‐hydroxy carboxylamides, was established. Their additional methylene bromide side chain constitutes a useful handle for rapid diversification, as demonstrated by a series of further functionalizations. Moreover, the in situ formation of an iodine(III) species under the reaction conditions was proven. Our findings clearly corroborate that hypervalent λ3‐benziodoxolones are involved in these organocatalytic reactions.  相似文献   
19.
Biobased nanofibers are increasingly considered in purification technologies due to their high mechanical properties, high specific surface area, versatile surface chemistry and natural abundance. In this work, cellulose and chitin nanofibers functionalized with carboxylate entities have been prepared from pulp residue (i.e., a waste product from the pulp and paper production) and crab shells, respectively, by chemically modifying the initial raw materials with the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated oxidation reaction followed by mechanical disintegration. A thorough investigation has first been carried out in order to evaluate the copper(II) adsorption capacity of the oxidized nanofibers. UV spectrophotometry, X-ray photoelectron spectroscopy and wavelength dispersive X-rays analysis have been employed as characterization tools for this purpose. Pristine nanofibers presented a relatively low content of negative charges on their surface thus adsorbing a low amount of copper(II). The copper adsorption capacity of the nanofibers was enhanced due to the oxidation treatment since the carboxylate groups introduced on the nanofibers surface constituted negative sites for electrostatic attraction of copper ions (Cu2+). The increase in copper adsorption on the nanofibers correlated both with the pH and carboxylate content and reached maximum values of 135 and 55 mg g?1 for highly oxidized cellulose and chitin nanofibers, respectively. Furthermore, the metal ions could be easily removed from the contaminated nanofibers through a washing procedure in acidic water. Finally, the adsorption capacity of oxidized cellulose nanofibers for other metal ions, such as nickel(II), chromium(III) and zinc(II), was also demonstrated. We conclude that TEMPO oxidized biobased nanofibers from waste resources represent an inexpensive and efficient alternative to classical sorbents for heavy metal ions removal from contaminated water.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号