Flame‐retarded polyamide 6.6 (FR‐PA6.6) was prepared by the cocondensation of hexamethylene diammonium adipate (AH‐salt) with the corresponding salts of hexamethylene diamine and two different organophosphorus compounds, namely, 3‐hydroxyphenylphosphinylpropanoic acid (3‐HPP, 1) and 9,10‐dihydro‐10‐[2,3‐di (hydroxycarbonylpropyl]‐10‐phosphaphenanthrene‐10‐oxide (DDP, 2). The incorporation of the phosphorus comonomers and the thermal and physical properties of the resulting copolyamides have been studied. The phosphorus‐modified FR‐PA6.6 possesses high relative viscosities of 2.0 to 2.4, good thermal stability, and was used for the production of polyamide blends by merging FR‐PA6.6 with commercial PA6. This offered access to flame‐retarded PA6 multifilaments, which possess tensile strengths up to 0.7 GPa and elastic moduli up to 6.2 GPa. Knitted fabrics of FR‐PA6 exhibit high limiting oxygen index (LOI) values between 36 and 38 and executed burning tests demonstrate that the incorporation of phosphorus‐based comonomers improve flame retardancy significantly. The approach presented here offers a straightforward access to effective flame retardancy in nylon 6. 相似文献
Isotopes of hydrogen (3H, 2H) and oxygen (18O) are perfect candidates for groundwater tracers. A survey of isotopic composition of 34 groundwater samples and one Lake from Vojvodina region (Serbia) is presented here. Tritium activity concentration and stable isotope composition (δ2H, δ18O), as well as deuterium excess, were determined. The groundwater samples lie on the groundwater regression line. Minor deviations and a few lower deuterium excess values indicate waters recharged in a different climate regime and subjected to evaporation, respectively. According to the obtained results, most of the analyzed groundwater can be characterized as modern waters, recharged mostly from precipitation.
RNA viruses display the highest replication error rate in our biosphere, leading to highly diverse viral populations termed quasispecies. The gold standard method for detection and quantification of variants in a quasispecies is cloning and sequencing, but it is expensive, laborious and time consuming. Therefore, other mutation detection approaches, including SSCP, are often used. In this study, we demonstrate development and the usage of a CE‐SSCP method for quantification of two nearly identical viral variants in heterogenic population of a mumps virus strain and its comparison to RFLP‐CE‐fragment length analysis (RFLP‐CE‐FLA). Analyzed PCR fragments were of the same size (245 bp) with one difference in their nucleotide sequence. The limit of detection of both methods was at 5% of the minor variant. When PCR amplicons of the two variants were pooled, methods' results were very similar. On the contrary, the quantification results of samples in which variants were mixed prior to PCR showed substantial difference between the two methods. Our results indicate that although both methods can be used for detection and monitoring of a specific mutation within a viral population, caution should be taken when quantitative analysis of complex samples is based solely on results of one method. 相似文献
Molecule deposition on a prepatterned substrate is a recently developed technique to generate desired structures of organic molecules on surfaces via self-organization. For the case of prepatterned stripes, the time-resolved process of structure formation is studied via lattice Monte Carlo simulations. By systematic variation of the interaction strength, three distinct growth regimes can be identified: localized growth, bulge formation, and cluster formation. All three growth regimes can be recovered in the experiment when choosing appropriate organic molecules. Some key microscopic observables, reflecting the properties of the structure formation, display a non-monotonous dependence on the interaction strength. 相似文献
Fluorinated groups are essential for drug design, agrochemicals, and materials science. The bis(trifluoromethyl)amino group is an example of a stable group that has a high potential. While the number of molecules containing perfluoroalkyl, perfluoroalkoxy, and other fluorinated groups is steadily increasing, examples with the N(CF3)2 group are rare. One reason is that transfer reagents are scarce and metal-based storable reagents are unknown. Herein, a set of CuI and AgI bis(trifluoromethyl)amido complexes stabilized by N- and P-donor ligands with unprecedented stability are presented. The complexes are stable solids that can even be manipulated in air for a short time. They are bis(trifluoromethyl)amination reagents as shown by nucleophilic substitution and Sandmeyer reactions. In addition to a series of benzylbis(trifluoromethyl)amines, 2-bis(trifluoromethyl)amino acetate was obtained, which, upon hydrolysis, gives the fluorinated amino acid N,N-bis(trifluoromethyl)glycine. 相似文献
The isoelectronic replacement of CC bonds with −BN+ bonds in polycyclic aromatic hydrocarbons (PAHs) is a widely used tool to prepare novel optoelectronic materials. Far less well explored are corresponding B,O-doped PAHs, although they have a similarly high application potential. We herein report on the modular synthesis of B,N- and B,O-doped PAHs through the [Au(PPh3)NTf2]-catalyzed 6-endo-dig cyclization of BN–H and BO–H bonds across suitably positioned CC bonds in the key step. Readily available, easy-to-handle o-alkynylaryl boronic and borinic acids serve as starting materials, which are either cyclized directly or first converted into the corresponding aminoboranes and then cyclized. The reaction even tolerates bulky mesityl substituents on boron, which later kinetically protect the formed B,N/O-PAHs from hydrolysis or oxidation. Our approach is also applicable for the synthesis of rare doubly B,N/O-doped PAHs. Specifically, we prepared 1,2-B,E-naphthalenes and -anthracenes, 1,5-B2-2,6-E2-anthracenes (E = N, O) as well as B,O2-containing and unprecedented B,N,O-containing phenalenyls. Selected examples of these compounds have been structurally characterized by X-ray crystallography; their optoelectronic properties have been studied by cyclic voltammetry, electron spectroscopy, and quantum-chemical calculations. Using a new unsubstituted (B,O)2-perylene as the substrate for late-stage functionalization, we finally show that the introduction of two pinacolatoboryl (Bpin) substituents is possible in high yield and with perfect regioselectivity via an Ir-catalyzed C–H borylation approach.Singly and doubly B,E-doped PAHs were synthesized using a protocol that starts from easy-to-handle boronic and borinic acids and offers the possibility to choose between the preparation of B,O- and B,N-PAHs in the final reaction step.相似文献
ABSTRACT By an Amadori rearrangement of easily available 5-azido-5-deoxy-D-glucofuranose with dibenzylamine and subsequent catalytic hydrogenation of the resulting 5-azido-1-(N,N-dibenzyl)amino-1,5-dideoxy-D-fructopyranose, 1-amino-1,2,5-trideoxy-2,5-imino-D-mannitol was obtained in only two steps and in excellent overall yield. Likewise, other amines were employed to introduce extended side chains ultimately suitable for attachment of the inhibitor to solid supports. The reported rearrangement reaction is a high yielding, convenient and apparently general entry to 1-aminodeoxyketopyranoses modified at C-5, facilitated by the ring enlargement of the aldofuranose to the ketopyranose as an additional driving force. A range of selected chain extended analogues was prepared by acylation of N-1. Inhibitors obtained exhibit Ki-values with D-glucosidases in the micromolar range. Interestingly, 1-N-acylation resulted in superior inhibitory activities, as did the addition of a hexyl chain. 相似文献
For sustainable energy storage, all-organic batteries based on redox-active polymers promise to become an alternative to lithium ion batteries. Yet, polymers contribute to the goal of an all-organic cell as electrodes or as solid electrolytes. Here, we replace the electrolyte with a deep eutectic solvent (DES) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and N-methylacetamide (NMA), while using poly(2,2,6,6-tetramethylpiperidin-1-yl-oxyl methacrylate) (PTMA) as cathode. The successful combination of a DES with a polymer electrode is reported here for the first time. The electrochemical stability of PTMA electrodes in the DES at the eutectic molar ratio of 1 : 6 is comparable to conventional battery electrolytes. More viscous electrolytes with higher salt concentration can hinder cycling at high rates. Lower salt concentration leads to decreasing capacities and faster decomposition. The eutectic mixture of 1 : 6 is best suited uniting high stability and moderate viscosity. 相似文献
Members of the cryptochrome/photolyase family (CPF) of proteins utilize noncovalently bound light‐absorbing cofactors for their biological function. Usually, the identity of these cofactors is determined after expression in heterologous systems leaving the question unanswered whether these cofactors are identical to the indigenous ones. Here, cryptochrome 3 from Arabidopsis thaliana was expressed as a fusion with the green fluorescent protein in Arabidopsis plants. Besides the confirmation of the earlier report of its localization in chloroplasts, our data indicate that fractions of the fusion protein are present in the stroma and associated with thylakoids, respectively. Furthermore, it is shown that the fusion protein expressed in planta contains the same cofactors as the His6‐tagged protein expressed in Escherichia coli, that is, flavin adenine dinucleotide and N5,N10‐methenyltetrahydrofolate. This demonstrates that the heterologously expressed cryptochrome 3, characterized in a number of previous studies, is a valid surrogate of the corresponding protein expressed in plants. To our knowledge, this is also a first conclusive analysis of cofactors bound to an Arabidopsis protein belonging to the CPF and purified from plant tissue. 相似文献