首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13214篇
  免费   2212篇
  国内免费   1413篇
化学   9090篇
晶体学   122篇
力学   884篇
综合类   88篇
数学   1613篇
物理学   5042篇
  2024年   45篇
  2023年   280篇
  2022年   474篇
  2021年   518篇
  2020年   532篇
  2019年   474篇
  2018年   461篇
  2017年   400篇
  2016年   575篇
  2015年   636篇
  2014年   734篇
  2013年   979篇
  2012年   1123篇
  2011年   1148篇
  2010年   796篇
  2009年   735篇
  2008年   818篇
  2007年   764篇
  2006年   684篇
  2005年   562篇
  2004年   415篇
  2003年   348篇
  2002年   320篇
  2001年   280篇
  2000年   235篇
  1999年   278篇
  1998年   262篇
  1997年   191篇
  1996年   214篇
  1995年   213篇
  1994年   183篇
  1993年   160篇
  1992年   129篇
  1991年   142篇
  1990年   143篇
  1989年   108篇
  1988年   92篇
  1987年   78篇
  1986年   59篇
  1985年   62篇
  1984年   28篇
  1983年   33篇
  1982年   26篇
  1981年   20篇
  1980年   13篇
  1979年   10篇
  1978年   8篇
  1977年   10篇
  1974年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
A better understanding of nanoelectrospray ionization (nano‐ESI) would be beneficial in further improving the performances of nano‐ESI. In this work, the pulsed high‐voltage (HV) nano‐ESI has been electrically modeled and then systematically characterized by both voltage‐current and mass spectrometry measurements. First, the equivalent resistance of a nano‐ESI source changes with respect to both emitter tip diameter and the HV applied. Increased voltage could improve both spray current and ionization efficiency of the pulsed HV nano‐ESI. Compared with conventional DC HV method, a pulsed HV has less heating effect on the capillary tip and thus allowing the application of a much higher voltage onto a nano‐ESI source. As a result, a pulsed HV nano‐ESI could further boost the ionization efficiency of nano‐ESI by employing even higher voltages than conventional DC nano‐ESI sources.  相似文献   
952.
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution–air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C−H/N−H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) “reversible” electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.  相似文献   
953.
To characterize of the constituents in rat urine after oral administration of Radix Astragali decoction, a HPLC-DAD-MS/MS technique had been developed. Urine collected from 0 to 24 h, after administration, was purified using a C18 solid-phase extraction cartridge, and then detected by an on-line MS/MS detector. By comparing the retention times and MS/MS data with those obtained from authentic compounds and the published data, a total of 11 compounds including six flavonoids, one dipeptide, one triterpenoid and three of their metabolites in urine were identified. Compounds daidzein, genistein, quercetin, L-asparamide-D-phenylalanine, 4,2′,4′-trihydroxychalcone, Astragaloside-IV, daidzein sulfate, and kaempferol sulfate were for the first time detected by HPLC-MS/MS technique in urine. The present research results success-fully narrowed the range of effective constituents to be found in Astragalus membranaceus and would be useful for the following action mechanism research of this traditional Chinese medicine in treating various diseases.  相似文献   
954.
Tang D  Li Q  Tang J  Su B  Chen G 《Analytica chimica acta》2011,686(1-2):144-149
A sensitive and facile quartz crystal microbalance (QCM) biosensor for glucose detection in biological fluids was developed by means of a displacement-type assay mode between glucose and its analogy dextran for concanavalin A (ConA) binding sites on a graphene-based sensing platform. To construct such a displacement-based sensor, phenoxy-derived dextran (DexP) molecules were initially assembled onto the surface of graphene-coated QCM probe via π-π stacking interaction, and ConA molecules were then immobilized on the dextran through the dextran-ConA interaction. Upon addition of glucose, the analyte competed with the dextran for the ConA, and displaced it from the QCM probe, leading to a change in the frequency. Under optimal conditions, the frequency change relative to the basic resonant frequency was proportional to glucose concentration, and exhibited a dynamic range from 0.01 to 7.5 mM with a low detection limit (LOD) of 5.0 μM glucose (at 3σ). The relative standard deviations (RSDs) were below 6.2% and 9.0% for the reproducibility and selectivity of the QCM glucose sensors, respectively. In addition, the assay system was evaluated with glucose spiking samples into the distilled water and blank cattle serum, receiving in excellent correlation with the referenced values.  相似文献   
955.
Ag-graphene composite nanosheets (AGCN) with adjustable size and well-controlled densities of Ag nanoparticles (Ag NPs) using Poly(N-vinyl-2-pyrrolidone) (PVP) as a reductant and stabilizer are reported. The obtained AGCN substrate is extremely suitable for surface-enhanced Raman spectroscopy (SERS).  相似文献   
956.
A novel approach towards 7b-aryl-indeno[1,2,3-jk]fluorene based on a nitrogen-containing core is reported. The acid-promoted Friedel-Crafts reaction of 9-(2-bromophenyl)-9-fluorenol with carbazole, triphenylamine or triindole afforded 9-(2-bromophenyl)fluorenyl-carbazole, -triphenylamine and -triindole derivatives, which were subsequently converted to 7b-aryl-fluoradenes via palladium-catalyzed intramolecular C-H direct arylation as a key step.  相似文献   
957.
Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy (SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies (PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.  相似文献   
958.
Hydrogen bonding interaction as one type of non-covalent force has proven itself to be highly efficient for constructing structurally unique artificial secondary structures. Here, the structure of Naryl-substituted anthranilamide in solution is demonstrated by various NMR technique, the intramolecular hydrogen bonds between amide attached to arylamine of the same ring is proposed, which is supported by its crystal structure in the solid phase. The substituent on the nitrogen atom of arylamine plays an important role in forming the presence of intramolecular hydrogen bonds. The chemical shift of the Naryl-H downfield changes obviously, due to the formation of intramolecular hydrogen bonds and the deshielding effect of oxygen, and the neighboring C–H is activated and shows downfield protonic signal too. The presence of intramolecular hydrogen bonds probably provides the explanation for the transformation from Naryl-substituted anthranilamide to imine, which could be converted into 2-aryl quinazolinone finally.  相似文献   
959.
Two dithienocyclopentafluorene-based small-molecule acceptors (SMAs) were developed that feature methylene-functionalized conjugated side chains, to study the effect of arylmethylene substitution and its number on structure, optoelectronic properties and device performance. Results showed that two SMAs have better absorption properties and planarity, lower bandgaps and higher LUMOs compared with the control SMA without conjugated side chains. The synthesized SMAs were tested in polymer solar cells for examples of their applicability. This work argues that the introduction of methylene-functionalized conjugated side chains has great potential in tuning molecular structure, optoelectronic properties, device physics and photovoltaic performance of SMAs.  相似文献   
960.
Molecular ordering within the photoactive layer plays a crucial role in determining the device performance of organic solar cells(OSCs).However,the simultaneous molecular ordering processes of polymer donors and non-fullerene acceptors(NFAs)during solution casting usually bring confinement effect,leading to insufficient structural order of photovoltaic components.Herein,the molecular packing of mINPOIC NFA is effectively formed through a heating induced aggregation strategy,with the aggregation of PBDB-T,which has a strong temperature dependence,is retarded by casting on a preheated substrate to reduce its interference toward m-INPOIC.A sequent thermal annealing treatment is then applied to promote the ordering of PBDB-T and achieve balanced aggregation of both donors and acceptors,resulting in the achievement of a maximum efficiency of 13.9% of PBDB-T:m-INPOIC binary OSCs.This work disentangles the interactions of donor polymer and NFA during the solution casting process and develops a rational strategy to enhance the molecular packing of NFAs to boost device performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号