首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   5篇
  国内免费   1篇
化学   358篇
力学   5篇
数学   61篇
物理学   86篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2017年   3篇
  2016年   4篇
  2014年   9篇
  2013年   13篇
  2012年   18篇
  2011年   28篇
  2010年   12篇
  2009年   11篇
  2008年   25篇
  2007年   33篇
  2006年   33篇
  2005年   36篇
  2004年   29篇
  2003年   19篇
  2002年   16篇
  2001年   14篇
  1999年   4篇
  1997年   4篇
  1996年   9篇
  1995年   7篇
  1994年   11篇
  1993年   6篇
  1992年   6篇
  1991年   2篇
  1990年   9篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   7篇
  1978年   10篇
  1977年   7篇
  1976年   5篇
  1974年   7篇
  1973年   10篇
  1972年   5篇
  1971年   2篇
  1969年   5篇
  1965年   5篇
  1907年   2篇
排序方式: 共有510条查询结果,搜索用时 15 毫秒
491.
An approach for patterning surfaces with prepared nanoparticles is described. Chitosan-stabilized gold nanoparticles (Au/chitosan NPs) were locally deposited on stainless steel (StSt), indium tin oxide (ITO), and highly-ordered pyrolytic graphite (HOPG). Deposition was driven by local pH gradient formed between a surface and a scanning electrochemical microscopy tip set in the direct mode. The pH at the substrate was increased upon biasing the surface by negative potentials, which caused the reduction of water. As the pH on the surface exceeded that of $ {\mathrm{pK}}_{{\mathrm{chitosanH}}^{+}}\sim 6.3 $ deprotonation of the amino groups of chitosan caused the irreversible deposition of the chitosan/AuNPs. The effect of different parameters, such as tip–surface distance and time, on deposition was studied. While the potential duration showed no clear influence, smaller tip–substrate distance and more negative potentials applied to the surface caused larger deposits. The overpotential needed for the deposition of nanoparticles on HOPG was the highest while that for StSt was the lowest. On the former, the sluggish kinetics caused the deposition of ring-shaped structures while disk-shaped deposits were formed on the other surfaces.  相似文献   
492.
Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass‐producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra‐fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra‐fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo‐dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure–function relationships.  相似文献   
493.
494.
Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream ~ Re s 1/2 U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 0 2 /(ων) for motor angular frequency ω and fluid kinematic viscosity ν.  相似文献   
495.
The development of smooth hydrophilic surfaces that act as substrates for supported lipid bilayers (SLBs) is important for membrane studies in biology and biotechnology. In this article, it is shown that thin films of poly(dimethylsiloxane) (PDMS) formed on a sensor surface can be used as a substrate for the deposition of reproducible and homogeneous zwitterionic SLBs by the direct fusion of vesicles. Poly(dimethylsiloxane) solution (1% w/v) was spin coated on Love acoustic wave and surface plasmon resonance devices to form a thin PDMS layer. Acoustic, fluorescence, and contact angle measurements were used for the optimization of the PDMS film properties as a function of plasma etching time; parameters of interest involve the thickness and hydrophilicity of the film and the ability to induce the formation of homogeneous SLBs without adsorbed vesicles. The application of PDMS-coated sensor devices to the study membrane of interactions was demonstrated during the acoustic and fluorescence detection of the binding of melittin and defensin Crp4 peptides to model supported lipid bilayers.  相似文献   
496.
The temperature dependence of intramolecular charge separation in a series of donor-bridge-acceptor molecules having phenothiazine (PTZ) donors, 2,7-oligofluorene FL(n) (n = 1-4) bridges, and perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptors was studied. Photoexcitation of PDI to its lowest excited singlet state results in oxidation of PTZ via the FL(n) bridge. In toluene, the temperature dependence of the charge separation rate constants for PTZ-FL(n)-PDI, (n = 1-4) is relatively weak and is successfully described by the semiclassical Marcus equation. The activation energies for charge separation suggest that bridge charge carrier injection is not the rate limiting step. The difficulty of using temperature and length dependence to differentiate hopping and superexchange is discussed, with difficulties in the latter topic explored via an extension of a kinetic model proposed by Bixon and Jortner.  相似文献   
497.
Ultrafast transient absorption measurements reveal that the rate of photoinduced electron transfer (PET) from colloidal CdSe quantum dots (QDs) to oxo-centered triruthenium clusters (Ru(3)O) depends on the structure of the chemical headgroup by which the Ru(3)O clusters adsorb to the QDs. Complexes comprising QDs and Ru(3)O clusters adsorbed through a pyridine-4-carboxylic acid ligand (nic-Ru(3)O) have an intrinsic PET rate constant of (4.9 ± 0.9) × 10(9) s(-1) whereas complexes comprising QDs and Ru(3)O clusters adsorbed through a 4-mercaptopyridine ligand (thiol-Ru(3)O) have an intrinsic PET rate constant of (36 ± 7) × 10(9) s(-1). Cyclic voltammetry measurements of nic-Ru(3)O and thiol-Ru(3)O yield reduction potentials vs. Ag/AgCl of -0.93 V for both clusters, and density functional theory calculations of the nic-Ru(3)O and thiol-Ru(3)O clusters yield internal reorganization energies for the cluster radical anion of -0.17 eV and -0.19 eV, respectively. The small differences in driving force and reorganization energy between the two complexes rule out these parameters as possible explanations for the factor-of-seven difference in the rate constants for PET. The difference in the observed rates of PET for the two complexes is therefore attributable to a difference in donor-acceptor electronic coupling, which, according to electronic structure calculations, is modulated by the torsional angle between the Ru(3)O core of the cluster and the functionalized pyridine ligand that bridges the cluster to the QD surface.  相似文献   
498.
F?rster Resonance Energy Transfer (FRET) between fluorescent proteins (FPs) is widely used to construct fluorescent sensor proteins, to study intracellular protein-protein interactions and to monitor conformational changes in multidomain proteins. Although FRET depends strongly on the orientation of the transition dipole moments (TDMs) of the donor and acceptor fluorophores, this orientation dependence is currently not taken into account in FRET sensor design. Similarly, studies that use FRET to derive structural constrains typically assume a κ(2) of 2/3 or use the TDM of green fluorescent protein, as this is the only FP for which the TDM has been determined experimentally. Here we used time-dependent density functional theory (TD-DFT) methods to calculate the TDM for a comprehensive list of commonly used fluorescent proteins. The method was validated against higher levels of calculation. Validation with model compounds and the experimentally determined TDM of GFP shows that the TDM is mostly determined by the structure of the π-conjugated fluorophore and is insensitive to non-conjugated side chains or the protein surrounding. Our calculations not only provide TDM for most of the currently used FPs, but also suggest an empirical rule that can be used to obtain the TDMs for newly developed fluorescent proteins in the future.  相似文献   
499.
Applications of a new statistical method Ordinal Analysis of Variance (ORDANOVA) for interlaboratory comparisons of measurement or test results of semi-quantitative (ordinal) and qualitative (binary) properties are discussed. ORDANOVA can be helpful for validation of measurement or test methods, proficiency testing of laboratories, development of reference materials with certified semi-quantitative and qualitative properties, that is, probably in every field where ANOVA is applied for quantitative properties. A statistics and criteria are proposed for performance assessment of laboratories active in semi-quantitative and qualitative testing and for other purposes of statistical analysis of such test results.  相似文献   
500.
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be readily modified during assembly by using mixed solutions containing thiolated species, including carbohydrates, oligo(ethylene glycol) (OEG), and other inert moieties. This intrinsic tunability of the self-assembled system is frequently used to optimize bioavailability and antibiofouling properties of the resulting SAM. However, until now, our nanoscale understanding of the behavior of these mixed glycoSAMs has lacked detail. In this study, we examined the time-dependent clustering of mixed sugar + OEG glycoSAMs on ultraflat gold substrates. Composition and surface morphologic changes in the monolayers were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. We provide evidence that the observed clustering is consistent with a phase separation process in which surface-bound glycans self-associate to form dense glycoclusters within the monolayer. These observations have significant implications for the construction of mixed glycoSAMs for use in biosensing and glycomics applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号