首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
化学   44篇
力学   8篇
数学   18篇
物理学   7篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   4篇
  2009年   4篇
  2008年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1992年   1篇
  1937年   1篇
排序方式: 共有77条查询结果,搜索用时 531 毫秒
21.
We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.  相似文献   
22.
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC‐MRR). While broadly and routinely applicable, its capabilities can exceed those of high‐resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas‐phase separations. GC‐MRR is shown to be ideal for compound‐specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC‐MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   
23.
A computational study was carried out by density functional theory (DFT) to investigate the relative stability and reactivity in three selected penicillins: penicillin-G, penicillin-V and carbenicillin. The geometry of the investigated molecules was optimized at the B3LYP/6-31G(d) level of theory. Then, the nuclear quadrupole resonance (NQR) parameters of 14N and 2H nuclei and natural bond orbital (NBO) analysis in these molecules were calculated on the geometrically optimized models at the B3LYP level using 6-311++G(d,p) basis sets in the gas phase. The NBO analysis shows that the occupancy of the LP(N) decreases with increasing p character of the lone pair of nitrogen. A comparison between the results obtained for these penicillins and related 6-APA structures of them indicates that the presence of a bulky side group in the acyl side chain can lead to more stability of the β-lactam ring. On the other hand, NBO analysis was applied to rationalize the 14N NQR parameters in the charge distribution around nitrogen atoms. Inspection of the present results illustrates that the largest component of EFG tensor (q zz ), the nuclear quadrupole coupling constant, C Q, and the NQR frequency values of nitrogens decrease with decreasing occupancy values of LP(N). We suggest that the reason for this trend can be found in increasing contribution of delocalized electrons of nitrogen in the intramolecular interactions and hence stability of these structures increases in the order: PG < PV < CA. Finally, a good relationship is found between most of the calculated 2H NQR parameters and the related intramolecular hydrogen bonds.  相似文献   
24.
The cleavage of β-O-4 linkages in lignin can generate monomers with a phenyl propane structure that can easily be upgraded into valuable hydrocarbon biofuels and renewable aromatic chemicals. High-yield lignin monomer production from extracted (or technical) lignin that is produced in a practical way could facilitate the productivity and profitability of biomass conversion processes. However, interunit carbon–carbon (C–C) linkages present in native lignin or formed during lignin condensation in biomass pretreatments dramatically reduce lignin monomer yields. Here, we present a perspective on biological and chemical strategies that have been successfully used to reduce the formation of C–C linkages in native or technical lignin. We analyze the mechanisms involved in these strategies and offer our views on improving the quality of technical lignin resulting from biomass conversion in order to achieve high-yield lignin monomer production.  相似文献   
25.
26.
27.
In recent years nanostructures have been widely used in industry, for example in nanoelectromechanical systems (NEMS); knowledge of the mechanical behavior of nanostructured materials is therefore important. In the work discussed in this paper, the non-dimensional buckling load of rectangular nano-plates was determined for general boundary conditions. Non-local theory was used to derive the governing equation, and this equation was then solved, by use of the finite-difference method, by applying different combinations of boundary conditions. To verify the proposed method, the non-dimensional buckling load determined for a simply supported plate was compared with results obtained by use of local theory and with results reported in the literature. When the method was used to calculate the buckling load of nano-beams, results were in good agreement with literature results. As a novel contribution of the work, non-symmetric boundary conditions were also studied. The non-dimensional buckling load was obtained for several values of aspect ratio, non-local variables, and different types of boundary condition. For better understanding, mode shapes are also depicted. The finite-difference method could be a powerful means of determination of the mechanical behavior of nanostructures, with little computational effort, and the results could be as reliable as those obtained by use of other methods. The ability to deal with a combination of boundary conditions illustrates the advantages of this method compared with other methods.  相似文献   
28.
This paper presents a new algorithm for designing dynamic sliding-mode controllers. The proposed controller is based on dynamic sliding manifolds to circumvent the difficulties associated with the conventional sliding mode controllers in the face of non-minimum phase systems. Unlike previous works, a proper and easy to implement algorithm is presented for designing the dynamic sliding manifold which facilitates the design of the controller. The output tracking problem in nonlinear non-minimum phase systems with matched and unmatched disturbances and matched nonlinearities is addressed. Then, the performance of the dynamic sliding mode controller is significantly improved by combining the given dynamic sliding manifold with online parameter adaptation. Simulations results are presented to demonstrate the effectiveness of the proposed sliding mode controller in terms of performance, robustness and stability.  相似文献   
29.
Dermatophytes are fungi that cause infections of keratinized tissues. We have recently demonstrated the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment (PDT) with 5,10,15-Tris(4-methylpyridinium)-20-phenyl-[21 H ,23 H ]-porphine trichloride (Sylsens B) in 5 m m citric acid/sodium citrate buffer (pH 5.2, formulation I). In this work, we examined the penetration of Sylsens B in healthy and with T. rubrum infected skin and we investigated the susceptibility of T. rubrum to PDT using formulation I and UVA-1 radiation (340–550 nm). Skin penetration studies were performed with formulations I and II (Sylsens B in PBS, pH 7.4) applied on dermatomed skin, human stratum corneum (SC), disrupted SC by T. rubrum growth and SC pretreated with a detergent. No penetration was observed in healthy skin. Disruption of SC by preceding fungal growth caused Sylsens B penetration at pH 7.4, but not at pH 5.2. However, chemically damaged SC allowed Sylsens B to penetrate also at pH 5.2. UVA-1 PDT was applied ex vivo during two fungal growth stages of two T. rubrum strains (CBS 304.60 and a clinical isolate). Both strains could be killed by UVA-1 alone (40 J/cm2). Combined with formulation I (1 and 10 μ m Sylsens B for, respectively, CBS 304.60 and the clinical isolate), only 18 J/cm2 UVA-1 was required for fungal kill. Therefore, PDT with 10 μ m Sylsens B (formulation I) and 18 J/cm2 UVA-1 could be considered as effective and safe. This offers the possibility to perform clinical studies in future.  相似文献   
30.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号