首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4092篇
  免费   139篇
  国内免费   17篇
化学   3350篇
晶体学   28篇
力学   31篇
数学   303篇
物理学   536篇
  2023年   16篇
  2022年   28篇
  2021年   39篇
  2020年   47篇
  2019年   60篇
  2018年   38篇
  2017年   39篇
  2016年   76篇
  2015年   80篇
  2014年   89篇
  2013年   211篇
  2012年   214篇
  2011年   261篇
  2010年   151篇
  2009年   156篇
  2008年   277篇
  2007年   277篇
  2006年   227篇
  2005年   236篇
  2004年   175篇
  2003年   172篇
  2002年   139篇
  2001年   88篇
  2000年   92篇
  1999年   66篇
  1998年   59篇
  1997年   67篇
  1996年   63篇
  1995年   39篇
  1994年   38篇
  1993年   51篇
  1992年   35篇
  1991年   31篇
  1990年   32篇
  1989年   28篇
  1988年   28篇
  1987年   38篇
  1986年   20篇
  1985年   52篇
  1984年   52篇
  1983年   18篇
  1982年   30篇
  1981年   39篇
  1980年   35篇
  1979年   47篇
  1978年   33篇
  1977年   29篇
  1976年   26篇
  1975年   21篇
  1974年   28篇
排序方式: 共有4248条查询结果,搜索用时 15 毫秒
21.
This article reports a synthetic method for a norbornene–ethylene–styrene (N‐E‐S) terpolymer, which has not been well investigated so far, via incorporation of styrene (S) into vinyl‐type norbornene–ethylene (N‐E) copolymers catalyzed by a substituted ansa‐fluorenylamidodimethyltitanium [Me2Si(3,6‐tBu2Flu)(tBuN)]TiMe2 catalyst ( I ) activated with a [Ph3C][B(C6F5)4]/Al(iBu)3 cocatalyst at room temperature in toluene. The resulting terpolymerization product contained the targeted N‐E‐S terpolymer and the contaminated homopolymers, which were then able to be completely removed by solvent fractionation techniques. While homopolystyrene was easily extracted by fractionation with methylethylketone as a soluble part, homopolyethylene and a trace amount of homopolynorbornene could be perfectly separated by fractionation with chloroform as insoluble parts. The detail characterizations of a chloroform‐soluble polymer with gel permeation chromatography, nuclear magnetic resonance, and differential scanning calorimetry analyses proved that it contained a true N‐E‐S terpolymer with long N‐E sequences incorporated with isolated or short styrene sequences. The homogeneity of the morphology together with a single glass transition temperature that proportionally decreased with the increase of the styrene contents indicated that the N‐E‐S terpolymer obtained in this work is a random polymer with an amorphous structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2765–2773, 2007  相似文献   
22.
Temperature stability of the threshold current and the lasing wavelength is investigated in a 1.3-μm GaInNAs/ GaAs single quantum-well laser. The measured characteristic-temperature was 88 K. The small wavelength shift per change in temperature of 0.35 nm/°C was obtained, indicating the superior lasing-wavelength stability. Therefore, it is shown experimentally that GaInNAs is very promising material for the fabrication of light source with excellent high-temperature performance for optical fiber communications.  相似文献   
23.
A spiro orthoester with an exomethylene group (exoSOE) was radically copolymerized with acrylonitrile or vinyl acetate at several feed ratios to obtain the corresponding copolymers having spiro orthoester moieties in the side chain. The obtained copolymers could be crosslinked via the double ring‐opening polymerization of the spiro orthoester moieties in their side chain by a treatment with BF3OEt2. The volume changes upon the crosslinking of the copolymers were evaluated by density measurements with a micromeritics gas pycnometer. The copolymers experienced less than 1% volume expansion instead of volume shrinkage during typical cationic crosslinking, regardless of the copolymer compositions. Negligible shrinkage was observed during the thermal cationic crosslinking of a film cast from a nitrobenzene solution of the copolymers containing a benzylthiophenium salt as a thermally latent cationic initiator. The constantly low volume changes during the crosslinking of the copolymers from exoSOE probably depended on the almost zero volume change during the cationic polymerizations of spiro orthoester derivatives. This indicates that exoSOE is an effective monomer for crosslinkable polymers without volume changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3666–3673, 2006  相似文献   
24.
Natural human hair was modified by the graft polymerization of propylene sulfide in an aqueous medium. The amount of the polymer grafted onto the reduced hair was 0.15–0.19 g on 1.0 g of hair. The grafted polymer was isolated by the hydrolysis of the hair in the polymer‐grafted hair under basic conditions and was confirmed to be poly(propylene sulfide) by 1H NMR, 13C NMR, and Fourier transform infrared spectra. The number‐average molecular weights of the isolated polymers from the grafted products were 10,000–12,000. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3778–3786, 2006  相似文献   
25.
We fabricated a micrometer‐long supramolecular chain in which π‐conjugated polyrotaxane was coupled. A new experimental setup was designed and constructed, and the simultaneous direct imaging of the structure and fluorescent function was achieved. Furthermore, we identified the formation of a polymer intertwined network and observed novel fluorescence due to a long‐range interaction via this intertwined network over a distance of 5 μm or more without quenching over 15 min in the near field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 801–809, 2006  相似文献   
26.
Spiro orthocarbonate (SOC) monomers having either an exomethylene group {3,3‐dimethyl‐9‐methylene‐1,5,7,11‐tetraoxaspiro[5.5]undecane (ExoSOC)} or an allyl group {9‐allyl‐3,3‐dimethyl‐1,5,7,11‐tetraoxaspiro[5.5]undecane (AllylSOC)} were radically copolymerized with vinyl monomers at several feed ratios to obtain the corresponding copolymers having SOC moieties in the side chain. The obtained copolymers were crosslinked via the double ring‐opening polymerization of the SOC moieties by a treatment with boron trifluoride etherate. The volume changes during the crosslinking of the copolymers were evaluated by density measurements with a gas pycnometer. As the SOC moiety composition increased, the volume shrinkage during the crosslinking was suppressed, and that finally changed into volume expansion. The volume changes during the crosslinking of the copolymers from AllylSOC were slightly larger than those of the copolymers from ExoSOC. The higher volume expansions in the crosslinking of AllylSOC‐based copolymers were ascribable to the lower steric hindrance around the SOC moieties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7040–7053, 2006  相似文献   
27.
The encapsulation of the nanocrystalline manganese‐doped zinc sulfide (ZnS:Mn) in poly(styrene‐b‐2vinylpyridine) (PS‐PVP) diblock copolymers is reported. Below the critical micelle concentration in the absence of nanocrystals (NCs), inverse micelles of PS‐PVP were induced by adding ZnS:Mn NCs, the presence of which was confirmed by scanning force microscope and dynamic light scattering. In toluene, a PS‐selective solvent, the less‐soluble PVP blocks preferentially surround the ligand‐coated ZnS:Mn NCs. For PS‐PVP encapsulated ZnS:Mn NCs, the ratio of blue emission to orange emission of ZnS:Mn NCs is dependent on both the concentration of PS‐PVP and the solvent quality. The pyridine of PVP blocks form complexes with the Zn atoms via the nitrogen lone pair and thus the sulfur vacancies are passivated. As a result, the defect‐related blue emission is selectively quenched even when the micelles are not formed. As the concentration of PS‐PVP encapsulating the ZnS:Mn NCs increases, the intensity of blue emission decreases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3227–3233, 2006  相似文献   
28.
A novel method for separating fulvic acid (FA) from soil extracts is proposed. The FA, defined as the acid-soluble fraction of an alkaline extract of soil, was separated based on the precipitation of an ion-pair with a cationic surfactant, such as domiphen bromide. The precipitate was dissolved in aqueous HCl to produce H+ -type FA and a surfactant chloride (SUR-Cl). SUR-Cl, in the aqueous solution, was removed by extraction with CHCl3. After the aqueous phase was passed through a cation-exchanger (H+ -type), H+ -type FA (FA-SUR) was obtained as a powder by lyophylization. The chemical characteristics of FA-SUR were compared with an FA sample separated according to the method of the International Humic Substances Society using a DAX-8 resin (FA-DAX). The oxygen content, O/C atomic ratio and total acidity of the FA-SUR were significantly larger than the corresponding values for FA-DAX. The solid-state CPMS 13C NMR spectra indicated that the higher oxygen content of the FA-SUR could be due to alcoholic hydroxyl groups and polysaccharides as well as carboxylic groups. These results show that FA-SUR is more polar and hydrophilic than FA-DAX.  相似文献   
29.
Time-of-Flight (TOF) neutron diffraction measurements have been carried out on aqueous 8 mol% sodium acetate solutions in D2O. Scattering cross sections that were observed for sample solutions involving 12C/13C and H/D isotopically substituted acetate ions were used to derive the first-order difference functions, ΔH(Q) and ΔC(Q), and corresponding distribution functions, G H(r;r) and G C(r;r), which describe the environmental structure around the methyl and the carboxyl groups within the acetate ion, respectively. Structural parameters concerning the first hydration shell of the carboxyl group within the acetate ion were obtained through the least squares fit to the observed intermolecular difference function, ΔC inter(Q). The nearest neighbor C O...D W1 (CO: carboxyl carbon atom, DW1: water deuterium atom) distance, r(C O...D W1 ), and the angle, ∠ C O ...D W1 -O W (O W : water oxygen atom), were determined to be 2.63(1) Å and 120(1)°, respectively. The coordination number, n(C O ...D W1 ), was obtained to be 4.0(1). These results are consistent with the hydration structure in which water molecules in the first hydration shell of the carboxyl group are hydrogen-bonded with oxygen atoms of the carboxyl group.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号