首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
  国内免费   1篇
化学   113篇
数学   2篇
物理学   3篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   13篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
101.
In this present study, the copolymerization of ethylene and 1-hexene was conducted over the [t-BuNSiMe2(2,7-t-Bu2Flu)]TiMe2 (CGC)/MAO catalyst immobilized on different supports. The effects of Ga and the Lewis acid BCl3 modification of the silica support on the copolymerization behavior were investigated based on catalytic activity and polymer properties. It was found that the silica support modified with BCl3 exhibited the highest activity. However, both Ga and BCl3 modifiers are capable of enhancing the catalytic activity, probably attributed to stronger interaction between the MAO and support together with the acidic sites exerted by the modification which could assist MAO to activate the catalyst during polymerization. Besides, a role of BCl3 as a spacer to keep apart the catalyst on the silica surface was proposed as another probable reason for activity increased. This led to the more homogeneous-like behavior with less effect of support and also caused the higher comonomer incorporation content. Moreover, the results revealed that narrow polymer molecular weight distribution can be achieved by the supported CGC catalyst, especially for acidic modified supports. On the other hand, there was no noticeable effect with regards to the melting temperature and copolymer microstructure of the Ga and BCl3 modification. Therefore, based on the study it may be regarded that the efficient supported CGC catalyst can be accomplished through the acidic modification namely Ga and BCl3.  相似文献   
102.
l ‐Lactide (l ‐LA) was polymerized in the presence of N‐methyldiethanolamine as an initiator and Sn(Oct)2 as a catalyst to give hydroxy‐telechelic poly(l ‐lactide) (PLLA‐diol) bearing a tertiary amine group at the center of the polymer chain. Successive chain extension of the PLLA‐diol with hexamethylene diisocyanate afforded PLLA‐based poly(ester‐urethane)s (PEU) with equally spaced tertiary amine groups. Treatment of the PEU with iodomethane converted tertiary amine groups to quaternary ammonium groups to give cationic ionomers (PEU‐MeI). The thermal, mechanical, hydrophilic, and biodegradation properties of the obtained polymers were investigated. The thermal properties of the PEUs and the PEU‐MeIs were similar each other. The PEU‐MeIs exhibited higher tensile modulus than those of the starting PEUs. The contact angles of water on the PEU‐MeIs were lower than those of the PEUs with similar NMDA content indicating their higher hydrophilicity. In compost degradation tests, the PEU‐MeIs showed slower degradation than those of the PEUs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4423–4428  相似文献   
103.
104.
Copolymerization of ethene and 1,3‐butadiene was conducted over SiO2‐supported CpTiCl3 catalyst using Ph3CB(C6F5)4 or B(C6F5)3 combined with triisobutylaluminium (iBu3Al) or trioctylaluminium (Oct3Al). When the copolymerization was carried out at 0°C, the Ph3CB(C6F5)4/iBu3Al and B(C6F5)3/Oct3Al systems selectively produced copolymers which contained about 0.5–2.5 mol‐% of trans‐1,4‐inserted butadiene units. The number‐average molecular weight (Mn) of the copolymers was around 80 000 with polydispersities in the range from 6 to 8. Oxidative degradation of the vinylene units with potassium permanganate decreased the Mn values to several thousands with polydispersities of ca. 2. This indicates that the butadiene units are randomly distributed in the copolymers. NMR analysis clarified that the decomposed product is a polyethene with carboxyl groups at both chain ends.  相似文献   
105.
Polymerization of 1,3-butadiene was conducted with the CoBr2(PPh3)2(Ph: phenyl)-methylaluminoxane (MAO) and MgCl2-supported CoBr2(PPh3)2-Al(CH3)3 catalyst systems. The microstructure of polybutadiene was analyzed in detail by 13C NMR spectroscopy after hydrogenation, which indicated that the distribution of the 1,2 and 1,4 units in polybutadiene is more random when the homogeneous CoBr2(PPh3)2-MAO catalyst was used. The microstructure of these polymers was compared with that obtained using BuLi as catalyst.  相似文献   
106.
107.
108.
The determination of petroleum fuel in the blood of burned bodies was carried out by three different gas chromatographic procedures. Seven components of gasoline (isopentane, n-pentane, 2-methylpentane, benzene, 2-methylhexane, 3-methylhexane and toluene) and five of kerosene (xylene, C9H20, mesitylene, pseudocumene and C11H24) were chosen as indicators with a coefficient of variation of 5-24%. The methods were applied to four autopsy cases with a relatively low carboxyhaemoglobin (HbCO) content. When gasoline exposure had occurred, the blood concentrations determined were almost identical whatever the components selected. Great variations in the components determined were found after kerosene exposure, and hydrocarbons greater than or equal to C14 were hardly inhaled by the victims. A higher content of fuel in the left than in the right ventricular blood observed in the autopsy cases suggests fuel inhalation just before death. The same phenomenon was also observed in the content of blood HbCO. Determinations of petroleum fuel and HbCO in both the right and left ventricular blood would be useful for the forensic diagnosis on burned bodies with a low HbCO content.  相似文献   
109.
We developed a head-space method for the determination of blood cyanide by gas chromatography with electron-capture detection. In this technique, a reaction pre-column, packed with chloramine-T, was used for the conversion of hydrogen cyanide into cyanogen chloride. Since the reaction pre-column eliminated the necessity for trapping hydrogen cyanide from the biological samples, blood cyanide was quickly analysed by acidification only. The reaction pre-column was durable for at least several months. The calibration curve gave good linearity when dichloromethane was used as the internal standard, and the lower detection limit taken from this plot was ca. 0.05 micrograms/ml. The relative standard deviation of spiked blood samples was in the range 0.6-3.9%. We determined blood cyanide levels at autopsy in victims who had died from fire using this method. A significantly higher cyanide content was detected in the left ventricular blood than in the right. There was a positive correlation between blood cyanide and carboxylhaemoglobin contents. This simple and sensitive technique could be very useful for the determination of cyanide in various samples.  相似文献   
110.
A glucose-sensitive field-effect transistor (FET) with a two-enzyme membrane containing gluconolactonase and glucose oxidase is investigated. The two-enzyme membrane (ca. 1 μm thick) is formed on the ion-sensitive gate of the FET by photopolymerization. The gluconolactonase used was a partially purified product prepared from crude glucose oxidase by gel filtration. A glucose sensor with only purified glucose oxidase has little response for glucose, but the co-immobilization of gluconolactonase and glucose oxidase considerably enhanced the response amplitude of the glucose sensor. The composition of the two-enzyme/photopolymer solution is optimized; gluconolactonase with an activity at least twice that of glucose oxidase is necessary. The linear calibration graph extends from 0.2 to 2 mM glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号