首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   3篇
化学   151篇
晶体学   1篇
数学   5篇
物理学   31篇
  2023年   2篇
  2022年   2篇
  2018年   3篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   22篇
  2012年   3篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   13篇
  2007年   5篇
  2006年   3篇
  2005年   9篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1997年   3篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   15篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有188条查询结果,搜索用时 31 毫秒
31.
In this work we obtain the thermodynamic properties of mixed (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) PC and (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)) PS monolayers. Measurements of compressibility (isotherms, bulk modulus, and excess area per molecule) and surface potential show that the properties of monolayers at the air–water interface depend on the concentration of ions (Na+ and K+) and the proportion of PS in the mixture. The dependence on PS arises because the molecule is originally bound to a Na+ counterion; by increasing the concentration of ions the entropy changes, creating a favorable system for the bound counterions of PS to join the bulk, leaving a negatively charged molecule. This change leads to an increase in electrostatic repulsions which is reflected by the increase in area per molecule versus surface pressure and a higher surface potential. The results lead to the conclusion that this mixture of phospholipids follows a non ideal behavior and can help to understand the thermodynamic behavior of membranes made of binary mixtures of a zwitterionic and an anionic phospholipid with a bound counterion.  相似文献   
32.
Several polymerizable hydroquinone derivatives were prepared by the Williamson synthesis. Thus, hydroquinone mono(p-vinylbenzyl) ether (III-1), hydroquinone methyl p-vinylbenzyl ether (III-4), and hydroquinone benzyl p-vinylbenzyl ether (III-5), tert-butylhydroquinone mono(p-vinylbenzyl) ether (III-2), and 2,5-di-tert-butylhydroquinone mono(p-vinylbenzyl) ether (III-3) were synthesized by the reactions of p-chloromethylstyrene with the corresponding hydroquinone derivatives in alcoholic potassium hydroxide or with their potassium salts in dipolar aprotic solvents. All monomers were found to polymerize by free-radical initiation except III-3, which required a cationic initiator.  相似文献   
33.
34.
The Ag induced superstructures on the Si(111) surface have been studied by low energy electron diffraction constant momentum transfer averaging (LEED/CMTA) technique. The vertical displacements of the atoms are determined from the analysis of the specularly reflected (00) beam intensities. Unexpected behavior of the Ag atoms is clarified: For the √3 × √3-Ag surface it is verified that the Ag atoms are embedded in the first double layer of Si, leading to a considerable rearrangement of the substrate. In contrast, for the 3 × 1-Ag surface, the Ag atoms are riding on the Si surface and the reconstruction of the substrate is small.  相似文献   
35.
The system Au/Si(100) has been studied using LEED and AES. Au films grow as Au(111) | Si(100) having six azimuthally rotated orientations at low deposition temperatures below 50°C after the formation of intermediate gold suicide layers. Crystalline gold silicide thin layers are formed on the Au(111) film after heat treatment at 100–400°C. Two types of suicide LEED pattern observed seem to have no correlation with crystallographic data reported on quenched alloy films. Heat treatment over 450°C leads to agglomeration of the film, producing a series of Au-induced superstructures. Heat treatment of the Au film over 1000°C regenerates the clean Si surface accompanied with many etch pits.  相似文献   
36.
Energy distributions of He+ ions scattered by Au and Ag surfaces are measured by an ISS system with high energy resolution, at a scattering angle of 90° and at incident ion energies ranging from 277 to 977 eV. It is found that the observed peak energies deviate toward the low energy side by several electron-volts with respect to the calculated elastic single collision energies. Both the deviation Q' and the inelastic loss energy Q are plotted as a function of incident ion energy for the Au surface.  相似文献   
37.
The growth process of silver on a Si(111) substrate has been studied in detail by low-energy ion-scattering spectroscopy (ISS) combined with LEED-AES. Neon ions of 500 eV were used as probe ions of ISS. The ISS experiments have revealed that the growth at room temperature and at high temperature are quite different from each other even in the submonolayer coverage range. The following growth models have been proposed for the respective temperatures. At room temperature, the deposited Ag forms a two-dimensional (2D) island at around 2/3 monolayer (ML) coverage, where the Ag atoms are packed commensurately with the Si(111)1 substrate. One third of the substrate Si surface remains uncovered there. Then it starts to develop into Ag crystal, and at a few ML coverage a 3D island of bulk Ag crystal grows directly on the substrate. An intermediate layer, which covers uniformly the whole surface before the growth of Ag crystal, does not exist. At high temperatures (>~200°C), the well-known Si(111)√3-Ag layer is formed as an intermediate layer, which consists of 2/3 ML of Ag atoms and covers the whole surface uniformly. These Ag atoms are embedded in the first double layer of the Si substrate. It is concluded that the formation of the √3 structure needs relatively high activation energy which may originate from the large displacement of Si atoms owing to the embedment of the Ag atoms, and does not proceed below about 200°C. The most stable state of the Ag atoms on the outermost Si layer is in the shape of an island, both for the Si(111) surface and for the Si(111)√3-Ag surface.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号