首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   14篇
  国内免费   1篇
化学   299篇
晶体学   6篇
力学   7篇
数学   2篇
物理学   91篇
  2023年   6篇
  2022年   2篇
  2021年   5篇
  2020年   10篇
  2019年   13篇
  2018年   3篇
  2016年   17篇
  2015年   7篇
  2014年   13篇
  2013年   20篇
  2012年   26篇
  2011年   31篇
  2010年   13篇
  2009年   7篇
  2008年   19篇
  2007年   15篇
  2006年   21篇
  2005年   18篇
  2004年   9篇
  2003年   17篇
  2002年   13篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1989年   3篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1973年   8篇
  1972年   2篇
  1968年   3篇
  1967年   2篇
  1966年   5篇
  1965年   5篇
排序方式: 共有405条查询结果,搜索用时 93 毫秒
21.
Low-energy inverse photoelectron spectroscopy (LEIPS) and ultraviolet photoelectron spectroscopy (UPS) incorporated into the multitechnique XPS system were used to probe the ionization potential and the electron affinity of organic materials, respectively. By utilizing gas cluster ion beam (GCIB), in situ analyses and depth profiling of LEIPS and UPS were also demonstrated. The band structures of the 10-nm-thick buckminsterfullerene (C60) thin film on Au (100 nm)/indium tin oxide (100 nm)/glass substrate were successfully evaluated in depth direction.  相似文献   
22.
Static light scattering measurements were performed on dilute solutions of monodisperse poly(ethylene oxide) (PEO) in methanol at 25°C. PEOs of five different molecular weights ranging from nominal Mw = 8.6 × 104 to 9.13 × 105 were used. Linear Zimm plots were obtained for all the PEO samples: no downturn was observed at small angles, indicating that no large aggregates of PEO molecules exist in the solution. From the plots, values of the weight-average molecular weight, Mw, the radius gyration, RG, and the second virial coefficient, A2, were successfully determined for respective PEOs. Observed relationship between RG and Mw indicates that methanol is certainly a good solvent for the polymer. © 1996 John Wiley & Sons, Inc.  相似文献   
23.
24.
25.
Dilute aqueous solutions of dodecyl-benzenesulfonic acid sodium salt (DBS-Na) and polyoxyethylenenonylphenyl ethers (PONPEs) were ultrasonically atomized. The surfactants were concentrated in collected mist droplets. The enrichment ratio increased with decreasing surfactant concentration. Depending on the surfactant’s molecular weight and affinity to water, different enrichment ratio was observed in the range of low feed concentrations. For anionic surfactant, DBS-Na, the enrichment ratio was significantly improved by KCl addition and a peak appeared on the plot of the ratio against KCl concentration. Addition of NaCl or CaCl2 · 2H2O to the surfactant solution also enhanced the enrichment ratio; however, the effect was relatively small. Such behaviors of the ratio were interpreted as enhanced interfacial adsorption of the surfactant and a lack of supply of surfactant monomers from liquid bulk because of slow breaking of surfactant micelles. Time required for collecting an amount of mist was also observed. Among the three salt systems, the time for KCl system was twice as long as others. This fact suggested that the formation of smaller droplets in KCl system.  相似文献   
26.
[reaction: see text] A concise method for the preparation of 1-acyl-4-alkoxy- or 1-acyl-4-alkylsulfanylnaphthalenes has been developed by the reaction of o-ethynylbenzoates or benzothioates with vinyl ethers, in the presence of a catalytic amount of PtCl(2). It is proposed that the reaction proceeds through [3 + 2]-cycloaddition of the platinum-containing carbonyl ylides followed by 1,2-alkyl migration.  相似文献   
27.
Oxidation of sec‐alcohols was investigated with ruthenium‐bearing microgel core star polymer catalysts [Ru(II)‐Star]. The star polymer catalysts were directly prepared via RuCl2(PPh3)3‐catalyzed living radical polymerization of methyl methacrylate (MMA), followed by the arm‐linking reaction with ethylene glycol dimethacrylate ( 1 ) in the presence of diphenylphosphinostyrene ( 2 ). The Ru(II)‐Star efficiently and homogeneously catalyzed the oxidation of 1‐phenylethanol ( S1 ) to give a corresponding ketone (acetophenone) in higher yield (92%) than the analogs of polymer‐supported ruthenium complexes. Importantly, the star catalyst afforded high recycling efficiency in the oxidation. They held catalytic activity against three times catalysis even though they were recovered under air‐exposure, whereas the conventional RuCl2(PPh3)3 lost the activity for same recycling procedure due to the deactivation by oxygen. The stability of the star catalysts during the recycle experiment was confirmed by detailed spectroscopic characterization. The star polymers also catalyzed oxidation for a wide range of sec‐alcohols with aromatic and aliphatic groups. The substrate affinity was different from that with RuCl2(PPh3)3, suggesting the unique selectivity caused by the specific structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   
28.
The reaction of various lithium tributylheteroarylborates with allylic bromides in the presence of copper(I) cyanide furnished the regioselective allylation at the heteroaryl ring.  相似文献   
29.
The first vapochromic organic crystals are described with respect to their preparation, color change, adsorption/desorption properties, crystal structures, and color‐change mechanism. Non‐solvatochromic, 1,4,5,8‐naphthalene‐tetracarboxylic diimide (NDI) derivatives 1 a bearing two pyrrole imine (PI) tethers have been used as a motif for the crystal packing template. Red‐purple vapochromic solid 3 was prepared by evacuation of orange crystals 2 (equivalent to 1 a ?2 MeOH), obtained by recrystallization of 1 a from MeOH. Solid 3 showed high‐adsorption ability and unprecedented vapor‐dependent color changes upon exposure to a variety of organic vapors, whereas light brown amorphous solid 1 a , did not show vapo‐ or solvatochromic behavior toward any organic solvent. The strong adsorption capability of 3 was confirmed by TGA experiments and adsorption/desorption isotherms. Analysis of the solid‐state UV/Vis analysis revealed that the vapor‐dependent color changes of 3 were owed to the specific interference of solvent vapors with its broad CT absorbance at λ=450–650 nm. Packing structures of 1 a in orange crystals 2 , red‐purple solid 3 , and regenerated orange solid 2 were unequivocally established by single crystal and synchrotron powder X‐ray diffraction, respectively. Molecular structures and arrays of 1 a in these materials indicated that 1) unit 1 a had an S‐shaped folded conformation in 2 and 3 by intramolecular donor–acceptor interactions between NDI and two PI units; 2) inclusion of the guest vapor into the S‐shaped template decreased the intramolecular PI‐NDI interactions, accompanied by increasing intermolecular NDI‐NDI and PI‐PI interactions; and 3) such flexible, open–close motions of the S‐shaped template could be repeated during reversible adsorption/desorption processes without degradation of crystal packing. The adsorption properties and mechanism of molecular shape‐dependent vapochromic behavior of 3 are discussed with reference to experimental results, crystallographic data, and theoretical calculations.  相似文献   
30.
We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号