首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5558篇
  免费   191篇
  国内免费   30篇
化学   4385篇
晶体学   49篇
力学   76篇
数学   348篇
物理学   921篇
  2023年   23篇
  2022年   39篇
  2021年   56篇
  2020年   66篇
  2019年   94篇
  2018年   54篇
  2017年   47篇
  2016年   110篇
  2015年   97篇
  2014年   133篇
  2013年   285篇
  2012年   315篇
  2011年   384篇
  2010年   207篇
  2009年   240篇
  2008年   382篇
  2007年   374篇
  2006年   416篇
  2005年   365篇
  2004年   336篇
  2003年   272篇
  2002年   271篇
  2001年   83篇
  2000年   66篇
  1999年   58篇
  1998年   70篇
  1997年   68篇
  1996年   66篇
  1995年   54篇
  1994年   35篇
  1993年   42篇
  1992年   34篇
  1991年   36篇
  1990年   18篇
  1989年   19篇
  1988年   26篇
  1987年   31篇
  1986年   45篇
  1985年   58篇
  1984年   47篇
  1983年   23篇
  1982年   52篇
  1981年   53篇
  1980年   44篇
  1979年   38篇
  1978年   29篇
  1977年   26篇
  1976年   23篇
  1975年   15篇
  1973年   18篇
排序方式: 共有5779条查询结果,搜索用时 15 毫秒
301.
Molecular assemblies that change photoluminescence color in response to thermal or mechanical stimulation without dissociation into the monomeric states in water are described herein. A dumbbell‐shaped amphiphilic compound forms micellar molecular assemblies in water and exhibits yellow photoluminescence derived from excimer formation of the luminescent core, which contains a 2,6‐diethynylanthracene moiety. Annealing of the aqueous solution induces a photoluminescence color change from yellow to green (λem, max=558→525 nm). The same photoluminescence color change is also achieved by rubbing the yellow‐photoluminescence‐emitting molecular assemblies adsorbed on glass substrates with cotton wool in water. The observed green photoluminescence is ascribed to micelles that are distinct from the yellow‐photoluminescence‐emitting micelles, on the basis of transmission electron microscopy observations, atomic force microscopy observations, and dynamic light scattering measurements. We examined the relationship between the structure of the molecular assemblies and the photophysical properties of the anthracene derivative in water before and after thermal or mechanical stimulation and concluded that thermal or mechanical stimuli‐induced slight changes of the molecular‐assembled structures in the micelles result in the change in the photoluminescence color from yellow to green in water.  相似文献   
302.
A certified reference material (CRM) for the determination of perfluorooctanoic acid (PFOA) has been issued as NMIJ CRM 4056-a by the National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Purity (kg kg?1) based on a titration method was determined by subtracting the mass fractions of impurities measured using liquid chromatography/mass spectrometry (LC/MS) from those of acids expressed as PFOA measured by a neutralization potentiometric titration. To validate an obtained result, purity based on a mass balance method was determined by subtracting the mass fractions of impurities, measured using LC/MS, Karl-Fischer titration (KFT), and vacuum evaporation, from 1 kg kg?1. Results from both titration and mass balance methods were in agreement within the accepted limits of uncertainty. The certified purity of NMIJ CRM 4056-a was determined to be 0.959 kg kg?1, calculated as the mean of the results obtained with the two methods. The standard uncertainty of the certified purity was evaluated from purity evaluations as well as from sample homogeneity and stability obtained from LC/MS and KFT analyses. Consequently, the expanded uncertainty was estimated to be 0.005 kg kg?1 with a coverage factor of k = 2.  相似文献   
303.
We report three‐dimensional (3D) nanoporous graphene with preserved 2D electronic properties, tunable pore sizes, and high electron mobility for electronic applications. The complex 3D network comprised of interconnected graphene retains a 2D coherent electron system of massless Dirac fermions. The transport properties of the nanoporous graphene show a semiconducting behavior and strong pore‐size dependence, together with unique angular independence. The free‐standing, large‐scale nanoporous graphene with 2D electronic properties and high electron mobility holds great promise for practical applications in 3D electronic devices.  相似文献   
304.
Porous films of p‐type CuInS2, prepared by sulfurization of electrodeposited metals, are surface‐modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n‐type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p–n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions.  相似文献   
305.
The selective formation of dialkyl formamides through photochemical CO2 reduction was developed as a means of utilizing CO2 as a C1 building block. Photochemical CO2 reduction catalyzed by a [Ru(bpy)2(CO)2]2+ (bpy: 2,2′‐bipyridyl)/[Ru(bpy)3]2+/Me2NH/Me2NH2+ system in CH3CN selectively produced dimethylformamide. In this process a ruthenium carbamoyl complex ([Ru(bpy)2(CO)(CONMe2)]+) formed by the nucleophilic attack of Me2NH on [Ru(bpy)2(CO)2]2+ worked as the precursor to DMF. Thus Me2NH acted as both the sacrificial electron donor and the substrate, while Me2NH2+ functioned as the proton source. Similar photochemical CO2 reductions using R2NH and R2NH2+ (R=Et, nPr, or nBu) also afforded the corresponding dialkyl formamides (R2NCHO) together with HCOOH as a by‐product. The main product from the CO2 reduction transitioned from R2NCHO to HCOOH with increases in the alkyl chain length of the R2NH. The selectivity between R2NCHO and HCOOH was found to depend on the rate of [Ru(bpy)2(CO)(CONR2)]+ formation.  相似文献   
306.
There is limited information on the mechanism for platinum oxidation and dissolution in Pt/C cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) under the operating conditions though these issues should be uncovered for the development of next‐generation PEFCs. Pt species in Pt/C cathode catalyst layers are mapped by a XAFS (X‐ray absorption fine structure) method and by a quick‐XAFS(QXAFS) method. Information on the site‐preferential oxidation and leaching of Pt cathode nanoparticles around the cathode boundary and the micro‐crack in degraded PEFCs is provided, which is relevant to the origin and mechanism of PEFC degradation.  相似文献   
307.
Pretreatment-induced structural alteration is critical in influencing the rate and extent of enzymatic saccharification of lignocellulosic biomass. The present work has investigated structural features of rice straw pretreated by hot-compressed water (HCW) from 140 to 240 °C for 10 or 30 min and enzymatic hydrolysis profiles of pretreated rice straw. Compositional profiles of pretreated rice straw were examined to offer the basis for structural changes. The wide-angle X-ray diffraction analysis revealed possible modification in crystalline microstructure of cellulose and the severity-dependent variation of crystallinity. The specific surface area (SSA) of pretreated samples was able to achieve more than 10-fold of that of the raw material and was in linear relationship with the removal of acetyl groups and xylan. The glucose yield by enzymatic hydrolysis of pretreated materials correlated linearly with the SSA increase and the dissolution of acetyl and xylan. A quantitatively intrinsic relationship was suggested to exist between enzymatic hydrolysis and the extraction of hemicellulose components in hydrothermally treated rice straw, and SSA was considered one important structural parameter signaling the efficiency of enzymatic digestibility in HCW-treated materials in which hemicellulose removal and lignin redistribution happened.  相似文献   
308.
Seawater bittern (nigari) is a concentrated solution remaining after the crystallization process of salt that has been used as a coagulant for tofu. Recently, various nigari products are distributed in the East Asia. To clarify the properties of nigari products, major mineral composition of six nigari products was determined. Then, effects of the nigari on the browning and antioxidant activity during the glucose/lysine Maillard reaction were investigated. Though the predominant cation was Mg2+, the content was varied by each product (0.88–6.49 mol/L). The other major ion contents were also varied. Each 0.5 mol/L of d-glucose and l-lysine were incubated with the nigari (5–50 % (v/v)) or nigari-related salts (1 or 2 mol/L). The browning (OD at 465 nm) and antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity and ferrous-reducing power) were increased remarkably by the nigari containing high Mg2+ content. The browning tended to be high with sulfates (Na2SO4, (NH4)2SO4). On the other hand, high content of MgCl2 decreased slightly the browning and antioxidant activity. These results suggest that the reaction and antioxidant activities were affected not only by salinity and cations but also by anions and other elements in the nigari.  相似文献   
309.
An S-shaped double helicene-like molecule (>99 % ee), possessing stable helical chirality, has been synthesized by the rhodium(I)/difluorphos complex-catalyzed highly diastereo- and enantioselective intramolecular double [2+2+2] cycloaddition of a 2-naphthol- and benzene-linked hexayne. The collision between two terminal naphthalene rings destabilizes the helical chirality of the S-shaped double helicene-like molecule, but the introduction of two additional fused benzene rings significantly increases the configurational stability. Thus, no epimerization and racemization were observed even at 100 °C. The enantiopure S-shaped double helicene-like molecule forms a trimer through the multiple C−H⋅⋅⋅π and C−H⋅⋅⋅O interactions in the solid-state. The trimers stack to form columnar packing structures, in which neighboring stacks have opposite dipole directions. The accumulation of helical structures in the same direction in the S-shaped double helicene-like molecule enhanced the chiroptical properties.  相似文献   
310.
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号