首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   4篇
  国内免费   1篇
化学   21篇
数学   2篇
物理学   6篇
  2022年   1篇
  2020年   2篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有29条查询结果,搜索用时 265 毫秒
21.
Ion exchange resin used in this work was styrene-divinylbenzene co-polymer with sulfonic acid group as a strong acid cation resin. This resin is particularly well suited for the removal of water hardness. In water treatment, commonly used softening processes are chemical precipitation and ion exchange. In this study, a combination of ultrasound and ion exchange was applied for reducing the hardness of water. The rate of exchange or kinetics of ion exchange is governed by several parameters. Therefore, important variables such as intensity of ultrasound, amount of resin, concentration of ions and contact time were investigated. The experimental data related to the removal of magnesium and calcium ions were fitted properly with Langmuir model. The kinetic of removal for both ions was pseudo-first-order. In point of mechanism, the internal porous and film diffusion were both effective in the process. The capacity of sorption and the velocity of removal were higher in the presence of ultrasound than control method and this is related to the cavitation process.  相似文献   
22.
Cu–S‐(propyl)‐2‐aminobenzothioate supported on functionalized Fe3O4 magnetic nanoparticles is reported as a reusable and highly efficient nanocatalyst for the one‐pot synthesis of polyhydroquinoline derivatives and also for selective oxidation of sulfides to sulfoxides. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectroscopy and atomic absorption spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
23.
Research on Chemical Intermediates - Here, the application of guanidine supported on magnetic nanoparticles Fe3O4 (MNPs-guanidine) as a novel magnetically separable base nanocatalyst is described....  相似文献   
24.
Research on Chemical Intermediates - In this study, a magnetic nitrogen-doped carbon-based copper (MNC-Cu) catalyst was fabricated so that natural silk cocoons undergo thermal processes and then...  相似文献   
25.
A Pd-Schiff-base grafted on functionalized mesoporous MCM-41 (Pd(0)-Schiff-base@MCM-41) was prepared using a post-grafting procedure and used as a highly efficient and reusable nanostructural catalyst for the carbon–carbon cross-coupling reactions of various aryl halides (including aryl iodide, bromide and chloride) with sodium tetraphenyl borate, phenylboronic acid and butyl acrylate. This catalyst exhibits interesting reactivity through Heck and Suzuki reactions.  相似文献   
26.
In the paper cesium tungstate nanofibers for the first time have been fabricated successfully by a simple electrospinning technique followed by heat treatment. The cesium tungstate nanofibers have been characterized by XRD, SEM, and FTIR techniques. The results indicated the morphology and quality of the annealed electrospun samples are strongly dependent on the citric acid content within electrospinning solution. It is found with increasing the citric acid content from 7 to 22% the samples morphology changed from a particle structure to a fibrous structure. The average diameter of nanofibers was ~350 nm. XRD analysis reveals that all of the samples have good crystallinity with the same diffraction peaks that can be indexed to the tetragonal phase of Cs2W3O10. Furthermore, the photocatalyst properties of cesium tungstate has not been reported to date. In the work the synthesized Cs2W3O10 nanofibers were found to exhibit photocatalytic performance in the photodegradation of RhB aqueous solution used as a pollutant model.  相似文献   
27.
A simple, efficient and less expensive protocol for the phosphine-free C–C coupling reactions and synthesis of anilines in the presence of 2-aminobenzamide complex of palladium supported on Fe3O4 magnetic nanoparticles (Pd(0)-ABA-Fe3O4) has been reported. The Suzuki reaction was carried out in water or PEG using phenylboronic acid (PhB(OH)2) or sodium tetraphenyl borate (NaBPh4). Pd(0)-ABA-Fe3O4 has been found promising for Heck reaction of butyl acrylate, styrene or acrylonitrile with aryl halides (including Cl, Br and I). Also, Pd(0)-ABA-Fe3O4 has been found as efficient catalyst for the amination of aryl halides using aqueous ammonia. The products have been obtained in short reaction times and high yields. The catalyst was easily separated using an external magnet from the reaction mixture and reused for several runs without significant loss of its catalytic efficiency or palladium leaching. The leaching of catalyst has been examined by hot filtration and ICP-OES technique. The nanomagnetical catalyst was characterized by FTIR, TGA, XRD, VSM, TEM, SEM, EDS, DLS and ICP-OES techniques.  相似文献   
28.
A recent model for the Coulomb-trap controlled hopping mobility in PVK has been tested by mobility and permittivity measurements between -70 and +80°C. The key assumption of the model, viz. a discontinuity in the permittivity and Poole-Frenkel coefficient, has been verified. Some of the previously derived parameters have been revised.  相似文献   
29.
Time-of-flight measurement show that the hole hopping mobility in polyvinycarbazole layers is independent of thickness between 3 and 80 μm. Long-tailed transit current profiles with “knees” are observed at all thicknesses and down to ?80°C, but scale only superficially with transit time. The discrete mobility is reconciled with the transit pulse dispersion by reference to Marshall's computer model of trap-controlled transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号