首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   11篇
  国内免费   5篇
化学   302篇
晶体学   14篇
力学   7篇
数学   28篇
物理学   87篇
  2024年   3篇
  2023年   4篇
  2022年   23篇
  2021年   23篇
  2020年   18篇
  2019年   20篇
  2018年   23篇
  2017年   22篇
  2016年   22篇
  2015年   13篇
  2014年   19篇
  2013年   25篇
  2012年   20篇
  2011年   35篇
  2010年   20篇
  2009年   17篇
  2008年   11篇
  2007年   11篇
  2006年   11篇
  2005年   8篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   9篇
  1998年   10篇
  1997年   14篇
  1996年   13篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
91.
Through several waves of technological research and un-matched innovation strategies, bio-catalysis has been widely used at the industrial level. Because of the value of enzymes, methods for producing value-added compounds and industrially-relevant fine chemicals through biological methods have been developed. A broad spectrum of numerous biochemical pathways is catalyzed by enzymes, including enzymes that have not been identified. However, low catalytic efficacy, low stability, inhibition by non-cognate substrates, and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio-catalysis. Thus, the development of green catalysts with multi-catalytic features along with higher efficacy and induced stability are important for bio-catalysis. Implementation of computational science with metabolic engineering, synthetic biology, and machine learning routes offers novel alternatives for engineering novel catalysts. Here, we describe the role of synthetic biology and metabolic engineering in catalysis. Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein-ligand interactions are discussed. The importance of molecular docking in predicting binding and catalytic functions is reviewed. Finally, we describe future challenges and perspectives.  相似文献   
92.
Binuclear centrosymmetric copper(II) complex of the formula bipyCu(L)4Cubipy, where bipy = 2,2′- bipyridine and L = 4-methoxy-2-phenyl acetate, is synthesized and characterized by FT-IR, UV-Visible, ESR and mass spectroscopy, electrochemical, thermogravimetric, and single crystal XRD techniques. The complex contains two differently oriented molecules per unit cell stabilized via intermolecular interactions. Geometry around each Cu(II) was found to be square pyramidal affected by asymmetrically bridging oxygen atoms occupying the apical position of one square pyramid and the axial position of another in the same binuclear molecule. The square base is formed by two oxygen atoms from two carboxylate ligands and two nitrogen atoms from the bipyridine moiety. TGA shows that the complex is stable up to 170 °C followed by stepwise loss of coordinated ligands, which was supported by GC-MS data as well. A broad absorption spectrum indicated 2B1g as the ground state and single electron occupancy of the dx2y2 orbital, which was confirmed by the ESR spectrum. The electrochemical study gives two oxidation curves corresponding to Cu(II)/Cu(III) and Cu(I)/Cu(II) and a reduction signal corresponding to the Cu(II)/Cu(I) process. The robust complex represents an interesting contribution to the understanding of coordination chemistry.  相似文献   
93.
Mixed-ligand complexes of general formula, [Cu(NNS)(sac)] (NNS′ = S-benzyl-β-N-(2-acetylpyrid-2-yl)methylenedithiocarbazate, NNS″ = S-benzyl-β-N-(2-benzoylpyrid-2-yl)methylenedithiocarbazate and NNS? = S-benzyl-β-N-(6-methylpyrid-2-yl)methylenedithio-carbazate, sac = the saccharinate anion) have been synthesized by reacting [Cu(sac)2(H2O)4] · 2H2O with the appropriate ligands in ethanol and characterized by various physico-chemical techniques. Magnetic and spectral evidence indicate that the complexes are four-coordinate in which the Schiff bases coordinate as NNS ligands and the sac- anion coordinates as a unidentate N-donor ligand. An X-ray crystallographic structural analysis of [Cu(NNS′)(sac)] shows that the complex has a distorted square-planar geometry with the Schiff base coordinated to the copper (II) ion as a uninegatively charged tridentate chelating agent via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulphur atom while the fourth coordination position is occupied by the N-bonded saccharinate anion. The complexes have been evaluated for their biological activities against selected pathogens and cancer cell lines. They display weak activity against the pathogenic bacteria and fungi. The complexes were highly active against the leukemic cell line (HL-60) but only [Cu(NNS′)(sac)] was found to exhibit strong cytotoxicity against the ovarian cancer cell line (Caov-3). All complexes were inactive against the breast cancer cell line (MCF-7).  相似文献   
94.
We present two techniques for implementing a new method of simulating an entire virion. Earlier computer simulations of a capsid protein revealed large edge effects due to the use of free standing boundaries. Because of the size of a given protomer, conventional three-dimensional periodic boundary conditions would be extremely wasteful. This would require an extremely large number of solvent molecules, and therefore would be computationally feasible for only a fragment of the entire virion. The new method employs non-space-filling computational cells in molecular modeling and molecular dynamics with the boundary conditions based on the icosahedral group. The method is general and could be used for any molecular system with a point group symmetry. With this method, the dynamical and spatial intra and interprotomer correlations can be studied at atomic levels. The technique is applicable to any virion with icosahedral symmetry. A sample calculation involving a geometry optimization of the human rhinovirus coat proteins is given to demonstrate the technique.  相似文献   
95.
Present study advocates the joint experimental and computational studies of two potent benzoimidazole‐based hydrazones with chemical formula C23H18F2N4O ( 5a ) and C25H22FN5O3 ( 5b ). Both 5a and 5b were synthesized and resolved into their crystal structures using SC‐XRD for the assessment of bond lengths, bond angles, unit cells and space groups. The structures of 5a and 5b were chemically characterized using infrared (FT‐IR), UV–Visible, nuclear magnetic resonance (1H‐NMR and 13C‐NMR), EIMS and elemental analysis. DFT at M06‐2X/6‐31G(d,p) level of theory was performed to get optimized structures and countercheck the experimental findings. Overall, DFT findings show excellent concurrence with the experimental data which confirms the purity of both compounds. FMO, NBO analysis, MEP surfaces and nonlinear optical (NLO) properties were explored at same level of theory. UV–Vis analysis at TDDFT/M06‐2X/6‐31G(d,p) level of theory showed that 5b is red shifted with λmax 331.69 nm as compared to 5a with λmax 240.25 nm. Global reactivity parameters were estimated using energy of FMOs indicated the greater harness value than the softness values of 5a and 5b . NBO analysis confirmed that the presence of non‐covalent interactions, hydrogen bonding and hyper conjugative interactions are pivotal cause for the existence of 5a and 5b in the solid‐state. NLO results of 5a and 5b were observed better than standard molecule recommended the NLO activity of said molecules for optoelectronic applications.  相似文献   
96.
This paper presents detailed 2D hydrodynamic simulations of implosion of a multi‐layered cylindrical target that is driven by an intense uranium beam. The target is comprised of a thick, high‐Z, high‐ρ cylindrical shell that encloses a sample material (Fe in the present case). Two options have been used for the focal spot geometry: an annular form and a circular form. The purpose of this work is to show that an intense heavy‐ion beam can induce the extreme physical conditions in the sample material similar to those that exist in the planetary cores. In this study, we use parameters of the beam that will be generated at the Facility for Antiprotons and Ion Research (FAIR), Darmstadt, in a few years' time. Production of these high‐energy‐density (HED) samples will allow us to study planetary physics in the laboratory. It is to be noted that planetary physics research is an important part of the FAIR HED physics program. A dedicated experiment named LAboratory PLAnetary Sciences (LAPLAS) has been proposed for this purpose. These simulations show that in such experiments an Fe sample can be imploded to the Earth's core conditions and to those in more massive rocky planets called Super‐Earths. Similarly, implosion of hydrogen and water samples will generate the core conditions of solar and extrasolar hydrogen‐rich gas giants and water‐rich icy planets, respectively. The LAPLAS experiments will thus provide very valuable information on the equation of state and transport properties of matter under extreme physical conditions, which will help scientists understand the structure and evolution of the planets in our solar system as well as of the extrasolar planets.  相似文献   
97.
98.
Primary arylamines can be prepared easily by electrophilic amination of arylzinc chlorides with acetone O-(2,4,6-trimethylphenylsulfonyl)oxime in the presence of DMPU as additive and CuCN as catalyst in good yields.  相似文献   
99.
100.
Journal of Solid State Electrochemistry - Scientists are increasingly interested in improving electroactive technologies for supercapacitor applications, since energy storage devices have improved...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号