首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   13篇
化学   185篇
力学   1篇
数学   3篇
物理学   17篇
  2023年   2篇
  2021年   2篇
  2020年   9篇
  2019年   8篇
  2016年   7篇
  2015年   8篇
  2014年   1篇
  2013年   7篇
  2012年   13篇
  2011年   16篇
  2010年   10篇
  2009年   5篇
  2008年   17篇
  2007年   17篇
  2006年   15篇
  2005年   10篇
  2004年   11篇
  2003年   8篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1967年   3篇
  1964年   1篇
  1890年   1篇
排序方式: 共有206条查询结果,搜索用时 46 毫秒
31.
32.
Multicomponent network formation by using a shape‐persistent macrocycle ( MC6 ) at the interface between an organic liquid and Au(111) surface is demonstrated. MC6 serves as a versatile building block that can be coadsorbed with a variety of organic molecules based on different types of noncovalent interactions at the liquid–solid interface. Scanning tunneling microscopy (STM) reveals the formation of crystalline bicomponent networks upon codeposition of MC6 with aromatic molecules, such as fullerene (C60) and coronene. Tetracyanoquinodimethane, on the other hand, was found to induce disorder into the MC6 networks by adsorbing on the rim of the macrocycle. Immobilization of MC6 itself was studied in two different noncovalently assembled host networks. MC6 assumed a rather passive role as a guest and simply occupied the host cavities in one network, whereas it induced a structural transition in the other. Finally, the central cavity of MC6 was used to capture C60 in a complex three‐component system. Precise immobilization of organic molecules at discrete locations within multicomponent networks, as demonstrated here, constitutes an important step towards bottom‐up fabrication of functional surface‐based nanostructures.  相似文献   
33.
In situ characterization of surface denaturation of a protein was realized by newly developed interface-selective multiplex electronic sum frequency generation spectroscopy. The observed electronic spectra of cytochrome c at the air/water interface exhibited a broad feature, which demonstrated coexistence of the nativelike and denatured protein at the interface. This situation of the mixed conformation at the air/water interface did not change in the acidic condition of pH=2 where the protein was completely denatured in the bulk water. In sharp contrast, only native spectrum was observed at the silica/water interface.  相似文献   
34.
Halorhodopsin is a retinal protein that acts as a light-driven chloride pump in the Haloarchaeal cell membrane. A chloride ion is bound near the retinal chromophore, and light-induced all- trans --> 13- cis isomerization triggers the unidirectional chloride ion pump. We investigated the primary ultrafast dynamics of Natronomonas pharaonis halorhodopsin that contains Cl (-), Br (-), or I (-) ( pHR-Cl (-), pHR-Br (-), or pHR-I (-)) using ultrafast pump-probe spectroscopy with approximately 30 fs time resolution. All of the temporal behaviors of the S n <-- S 1 absorption, ground-state bleaching, K intermediate (13- cis form) absorption, and stimulated emission were observed. In agreement with previous reports, the primary process exhibited three dynamics. The first dynamics corresponds to the population branching process from the Franck-Condon (FC) region to the reactive (S 1 (r)) and nonreactive (S 1 (nr)) S 1 states. With the improved time resolution, it was revealed that the time constant of this branching process (tau 1) is as short as 50 fs. The second dynamics was the isomerization process of the S 1 (r) state to generate the ground-state 13- cis form, and the time constant (tau 2) exhibited significant halide ion dependence (1.4, 1.6, and 2.2 ps for pHR-Cl (-), pHR-Br (-), and pHR-I (-), respectively). The relative quantum yield of the isomerization, which was evaluated from the pump-probe signal after 20 ps, also showed halide ion dependence (1.00, 1.14, and 1.35 for pHR-Cl (-), pHR-Br (-), and pHR-I (-), respectively). It was revealed that the halide ion that accelerates isomerization dynamics provides the lower isomerization yield. This finding suggests that there is an activation barrier along the isomerization coordinate on the S 1 potential energy surface, meaning that the three-state model, which is now accepted for bacteriorhodopsin, is more relevant than the two-state model for the isomerization process of halorhodopsin. We concluded that, with the three-state model, the isomerization rate is controlled by the height of the activation barrier on the S 1 potential energy surface while the overall isomerization yield is determined by the branching ratios at the FC region and the conical intersection. The third dynamics attributable to the internal conversion of the S 1 (nr) state also showed notable halide ion dependence (tau 3 = 4.5, 4.6, and 6.3 ps for pHR-Cl (-), pHR-Br (-), and pHR-I (-)). This suggests that some geometrical change may be involved in the relaxation process of the S 1 (nr) state.  相似文献   
35.
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface in the absence and presence of nanographene guests. In the absence of appropriate guest molecules, DBA derivatives with short alkoxy chains form two-dimensional (2D) porous honeycomb type patterns, whereas those with long alkoxy chains form predominantly dense-packed linear type patterns. Added nanographene molecules adsorb in the pores of the existing 2D porous honeycomb type patterns or, more interestingly, they even convert the guest-free dense-packed linear-type patterns into guest-containing 2D porous honeycomb type patterns. For the DBA derivative with the longest alkoxy chains (OC20H41), the pore size, which depends on the length of the alkoxy chains, reaches 5.4 nm. Up to a maximum of six nanographene molecules can be hosted in the same cavity for the DBA derivative with the OC20H41 chains. The host matrix changes its structure in order to accommodate the adsorption of the guest clusters. This flexibility arises from the weak intermolecular interactions between interdigitating alkoxy chains holding the honeycomb structure together. Diverse dynamic processes have been observed at the level of the host matrix and the coadsorbed guest molecules.  相似文献   
36.
Unsymmetrical gold(III)-dithiolene complexes are potential candidates for molecular materials that exhibit thermal structural phase transitions. In this study, unsymmetrical ppy-gold(III) (ppy=C-deprotonated-2-phenylpyridine(−)) complexes [AuC5] and [AuC6] coordinated by dithiolene ligands containing tetrathiafulvalene (TTF) skeletons with pentylthio (2-{bis(pentylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) and hexylthio groups (2-{bis(hexylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate(2−)) were synthesized. Both complexes exhibited a large absorption band at approximately 508 nm, owing to intramolecular ligand-to-ligand charge transfer. One-dimensional columnar structures with head-to-tail molecular arrangements around the metal ions were constructed in the crystals. The flexible alkylthio groups were intercalated into crystalline spaces between dithiolene ligands in the columns. [AuC5] exhibits a simple phase transition at 198 °C between crystalline and isotropic phases irreversibly. The crystalline phase of [AuC6] observed at 25 °C melted at 148 °C. Another crystalline phase grew above 148 °C with a very slow crystallization rate from the liquid phase and was completely transformed into an isotropic phase at 200 °C.  相似文献   
37.
38.
Excited-state structure and dynamics of 1,3,5-tris(phenylethynyl)benzene (TPB) have been studied in n-hexane and n-heptane solutions. Time-resolved fluorescence spectra, fluorescence anisotropy, and lifetime of TPB were recorded with femtosecond to nanosecond time resolution. Raman depolarization ratio was also measured to elucidate a nonplanar structure of the ground state. Two fluorescence components, the short-lived component with 150 fs lifetime and the long-lived component with 10 ns lifetime, were observed. The analysis of the fluorescence anisotropy values combined with the Raman depolarization data has led to a conclusion that TPB is primarily excited to a short-lived excited singlet state with a nonplanar structure, and then it relaxes to a long-lived excited singlet state with a 3-fold axis. A rapid structural change from a nonplanar to a planar structure is suggested to take place in the process of relaxation.  相似文献   
39.
The second-order nonlinear electronic spectra were measured for a dye oxazine 750 (OX750) adsorbed at the air/water interface using the multiplex electronic sum frequency generation (ESFG) spectroscopy recently developed by our group. The excitation-wavelength dependence of the ESFG spectrum was investigated, and a global fitting analysis was performed to separate contributions of one- and two-photon resonances. The analysis yielded linear interface electronic spectra in the one- and two-photon resonance regions, which can be directly compared to bulk absorption spectra. A two-dimensional plot of the linear interface electronic spectra is newly proposed to graphically represent all the essential information on the electronic structure of interfacial molecules. On this new analytical basis of the ESFG spectroscopy, the spectroscopic properties of OX750 at the interface are discussed.  相似文献   
40.
From the viewpoint of development of a removal agent for humic substances, we prepared Ti-modified silica gel, SiO2-Ti, from titanium alkoxide and microsized silica gel. The prepared silica agent was investigated in adsorption and photocatalytic degradation of humic substances in water. In these experiments, four humic substances, commercially available Wako humic acid (Wako-HA), Nordic aquatic humic acid (Nordic-HA), Nordic aquatic fulvic acid (Nordic-FA), and Suwannee river fulvic acid (Suwannee-FA), were used, and Freundlich constants (KF and 1/n) and photodegradation rates were evaluated. Wako-HA, which has the highest aromaticity ratio [Ar-OH]/[COOH] and molecular weight, had the highest adsorbability (KF=17.5 (mg/g)(L/mg)(1/n), 1/n=0.67) but the lowest photodegradability (<80%). On the other hand, Suwannee-FA, which has the lowest aromaticity, [Ar-OH]/[COOH] ratio, and molecular weight, afforded lesser adsorbability (KF=7.1 (mg/g)(L/mg)(1/n), 1/n=0.39) but the highest photodegradability (>99%). Nordic-HA and Nordic-FA afforded adsorbabilities similar to that for Suwannee-FA, and medium photodegradabilities between those for Wako-HA and Suwannee-FA. Adsorption and photodegradation capacities of SiO2-Ti were improved with increased Ti content and phosphorescence emission amount, respectively. From XRD analysis, we found that the structure of anatase-type TiO2 features the Ti modifiers of SiO2-Ti. Therefore, humic substance molecules effectively interact with the Ti modifiers and are decomposed by OH radicals generated in situ. We hope that SiO2-Ti will be used as a photodegradation catalyst in water purification plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号