首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   11篇
化学   185篇
力学   1篇
数学   3篇
物理学   17篇
  2023年   2篇
  2021年   2篇
  2020年   9篇
  2019年   8篇
  2016年   7篇
  2015年   8篇
  2014年   1篇
  2013年   7篇
  2012年   13篇
  2011年   16篇
  2010年   10篇
  2009年   5篇
  2008年   17篇
  2007年   17篇
  2006年   15篇
  2005年   10篇
  2004年   11篇
  2003年   8篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1967年   3篇
  1964年   1篇
  1890年   1篇
排序方式: 共有206条查询结果,搜索用时 0 毫秒
101.
The fiber-optic sensor for calcium ions is based on the fluorescent chelate of chlortetracycline formed in aqueous solution at pH 7.5. The chlortetracycline is immobilized on an anion-exchange membrane, which is attached to the end of a bifurcated fiber optic. The sensor responds to calcium ions in the 0–400 mM range; the error in measurements is ± 10 mM. The response is reversible but other divalent metals interfere.  相似文献   
102.
Spectroscopic and electrostatic probe measurements were made to examine plasma characteristics with or without a titanium plate under nitriding for a 10-kW-class direct-current arc plasma jet generator with a supersonic expansion nozzle in a low-pressure environment. Heat fluxes into the plate from the plasma were also evaluated with a Nickel slug and thermocouple arrangement. Ammonia and mixtures of nitrogen and hydrogen were used as a working gas. The NH/sub 3/ and N/sub 2/+3H/sub 2/ plasmas in the nozzle and in the downstream plume without a substrate plate were in thermodynamical nonequilibrium states. As a result, the H-atom electronic excitation temperature and the N/sub 2/ molecule-rotational excitation temperature intensively decreased downstream in the nozzle although the NH molecule-rotational excitation temperature did not show an axial decrease. Each temperature was kept in a small range in the plume without a substrate plate except for the NH rotational temperature for NH/sub 3/ working gas. On the other hand, as approaching the titanium plate, the thermodynamical nonequilibrium plasma came to be a temperature-equilibrium one because the plasma flow tended to stagnate in front of the plate. The electron temperature had a small radial variation near the plate. Both the electron number density and the heat flux decreased radially outward, and an increase in H/sub 2/ mole fraction raised them at a constant radial position. In cases with NH/sub 3/ and N/sub 2/+3H/sub 2/, a radical of NH with a radially wide distribution was considered to contribute to the better nitriding as a chemically active and non heating process.  相似文献   
103.
We developed a new surface-selective time-resolved nonlinear spectroscopy, femtosecond time-resolved electronic sum-frequency generation (TR-ESFG) spectroscopy, to investigate ultrafast dynamics of molecules at liquid interfaces. Its advantage over conventional time-resolved second harmonic generation spectroscopy is that it can provide spectral information, which is realized by the multiplex detection of the transient electronic sum-frequency signal using a broadband white light continuum and a multichannel detector. We studied the photochemical dynamics of rhodamine 800 (R800) at the air/water interface with the TR-ESFG spectroscopy, and discussed the ultrafast dynamics of the molecule as thoroughly as we do for the bulk molecules with conventional transient absorption spectroscopy. We found that the relaxation dynamics of photoexcited R800 at the air/water interface exhibited three characteristic time constants of 0.32 ps, 6.4 ps, and 0.85 ns. The 0.32 ps time constant was ascribed to the lifetime of dimeric R800 in the lowest excited singlet (S(1)) state (S(1) dimer) that is directly generated by photoexcitation. The S(1) dimer dissociates to a monomer in the S(1) state (S(1) monomer) and a monomer in the ground state with this time constant. This lifetime of the S(1) dimer was ten times shorter than the corresponding lifetime in a bulk aqueous solution. The 6.4 ps and 0.85 ns components were ascribed to the decay of the S(1) monomer (as well as the recovery of the dimer in the ground state). For the 6.4 ps time constant, there is no corresponding component in the dynamics in bulk water, and it is ascribed to an interface-specific deactivation process. The 0.85 ns time constant was ascribed to the intrinsic lifetime of the S(1) monomer at the air/water interface, which is almost the same as the lifetime in bulk water. The present study clearly shows the feasibility and high potential of the TR-ESFG spectroscopy to investigate ultrafast dynamics at the interface.  相似文献   
104.
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.  相似文献   
105.
Parallel phase-shifting digital holography (PPSDH) is a technique of single-shot phase-shifting digital holography. We found that there are two problems with this technique. (1) Some extraneous noises caused by the intensity unevenness of the reference wave become slightly superimposed on the object image. (2) The conjugate image cannot be completely removed. This is because the object wave causes the phase-shift error by illuminating an image sensor with a large incident angle. To solve these problems, we propose an algorithm for removing residual 0th-order diffraction and conjugate images in PPSDH. In the proposed algorithm, we modified phase-shifting interferometry in order to work through the unevenness of the intensity distribution and applied the Fourier transform technique to PPSDH to remove the residual conjugate image. The effectiveness of the proposed algorithm was experimentally verified.  相似文献   
106.
107.
We report a femtosecond time-resolved fluorescence study of cis-stilbene, a prototypical molecule showing ultrafast olefinic photoisomerization and photocyclization. The time-resolved fluorescence signals were measured in a nonpolar solvent over a wide ultraviolet-visible region with excitation at 270 nm. The time-resolved fluorescence traces exhibit non-single exponential decays which are well fit with bi-exponential functions with time constants of τ(A) = 0.23 ps and τ(B) = 1.2 ps, and they are associated with the fluorescence emitted from different regions of the S(1) potential energy surface (PES) in the course of the structural change. Quantitative analysis revealed that the two fluorescent components exhibit similar intrinsic time-resolved spectra extending from 320 nm to 700 nm with the (fluorescence) oscillator strength of f(A) = 0.32 and f(B) = 0.21, respectively. It was concluded that the first component is assignable to the fluorescence from the untwisted S(1) PES region where the molecule reaches immediately after the initial elongation of the central C[double bond, length as m-dash]C bond, while the second component is the fluorescence from the substantially twisted region around a shallow S(1) potential minimum. The quantitative analysis of the femtosecond fluorescence data clearly showed that the whole isomerization process proceeds in the one-photon allowed S(1) state, thereby resolving a recent controversy in quantum chemical calculations about the reactive S(1) state. In addition, the evaluated oscillator strengths suggest that the population branching into the isomerization/cyclization pathways occurs in a very early stage when the S(1) molecule still retains a planar Ph-C[double bond, length as m-dash]C-Ph skeletal structure. On the basis of the results obtained, we discuss the dynamics and mechanism of the isomerization/cyclization reactions of cis-stilbene, as well as the electronic structure of the reaction precursor.  相似文献   
108.
We propose a single-shot digital holography in which the complex amplitude distribution is obtained by spatial-carrier phase-shifting (SCPS) interferometry and the correction of the inherent phase-shift error occurred in this interferometry. The 0th order diffraction wave and the conjugate image are removed by phase-shifting interferometry and Fourier transform technique, respectively. The inherent error is corrected in the spatial frequency domain. The proposed technique does not require an iteration process to remove the unwanted images and has an advantage in the field of view in comparison to a conventional SCPS technique.  相似文献   
109.
A new type of beads mill for dispersing nanoparticles into liquids has been developed. The bead mill utilizes centrifugation to separate beads from nanoparticle suspensions and allows for the use of small sized beads (i.e. 15-30 microm in diameter). The performance of the beads mill in dispersing a suspension of titanium dioxide nanoparticle with 15 nm primary particles was evaluated experimentally. Dynamic light scattering was used to measure titania particle size distributions over time during the milling process, and bead sizes in the 15-100 microm range were used. It was found that larger beads (50-100 microm) were not capable of fully dispersing nanoparticles, and particles reagglomerated after long milling times. Smaller beads (15-30 microm) were capable of dispersing nanoparticles, and a sharp peak around 15 nm in the titania size distribution was visible when smaller beads were used. Because nanoparticle collisions with smaller beads have lower impact energy, it was found by X-ray diffraction and transmission electron microscopy that changes in nanoparticle crystallinity and morphology are minimized when smaller beads are used. Furthermore, inductively-coupled plasma spectroscopy was used to determine the level of bead contamination in the nanoparticle suspension during milling, and it was found that smaller beads are less likely to fragment and contaminate nanoparticle suspensions. The new type of beads mill is capable of effectively dispersing nanoparticle suspensions and will be extremely useful in future nanoparticle research.  相似文献   
110.
[reaction: see text] Trefoil-shaped tris(hexadehydrotribenzo[12]annulene) possessing a substructure of the ultimate two-dimensional C(sp)-C(sp(2)) network, graphyne, and the related tris(tetradehydrotribenzo[12]annulene) were synthesized, and their ground- and excited-state properties were investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号