首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   7篇
  国内免费   3篇
化学   266篇
晶体学   6篇
力学   24篇
数学   15篇
物理学   57篇
  2023年   7篇
  2022年   28篇
  2021年   15篇
  2020年   13篇
  2019年   15篇
  2018年   9篇
  2017年   7篇
  2016年   12篇
  2015年   12篇
  2014年   15篇
  2013年   27篇
  2012年   25篇
  2011年   22篇
  2010年   5篇
  2009年   9篇
  2008年   11篇
  2007年   16篇
  2006年   10篇
  2005年   10篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   9篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1971年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
61.
This paper reports analytical and numerical investigations about the singularities and bifurcations of a new class of discrete dynamical systems defined generally by the following 2-D discrete systems: y m+1,n+1=f(y m,n ,y m+1,n ,y m,n+1); we consider particularly the case ym+1,n+1 = f(ym,n, ym+1,n)y_{m+1,n+1} = f(y_{m,n}, y_{m+1,n}).  相似文献   
62.
ABSTRACT

Hydrogen storage reactions on Ni ? C59X(X = B, N) heterofullerene are investigated by using the state-of-the-art density functional theory calculations. The Ni atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to five hydrogen molecules with average adsorption energies of (?0.94, ?0.48, ?0.33, ?0.25 and ?0.20 eV) per hydrogen molecule for Ni ? C59B, while (?1.20, ?0.60, ?0.41, ?0.28 and ?0.23 eV) per hydrogen molecule for Ni ? C59N. With no metal clustering, the system gravimetric capacities are expected to be as large as 10.87 and 10.85 wt % for 5H2NiC59B?and 5H2NiC59N, respectively. While the desorption activation barriers of the complexes 1H2 + C59X?(X = B, N)?are outside the Department of Energy domain (?0.2 to ?0.6 eV), the desorption activation barriers of the complexes nH2 + C59X(X = B, N)(n = 2 ? 5) are inside this domain. The hydrogen storage of the irreversible 1H2 + NiC59X?(X = B, N) and reversible 2H2 + NiC59X?(X = B, N) interactions is characterised in terms of density of states and projected densities of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials.  相似文献   
63.
With technological advancements in the medicinal and pharmaceutical industries, numerous research studies have focused on the propolis produced by stingless bees (Meliponini tribe) and Apis mellifera honeybees as alternative complementary medicines for the potential treatment of various acute and chronic diseases. Propolis can be found in tropical and subtropical forests throughout the world. The composition of phytochemical constituents in propolis varies depending on the bee species, geographical location, botanical source, and environmental conditions. Typically, propolis contains lipid, beeswax, essential oils, pollen, and organic components. The latter include flavonoids, phenolic compounds, polyphenols, terpenes, terpenoids, coumarins, steroids, amino acids, and aromatic acids. The biologically active constituents of propolis, which include countless organic compounds such as artepillin C, caffeic acid, caffeic acid phenethyl ester, apigenin, chrysin, galangin, kaempferol, luteolin, genistein, naringin, pinocembrin, coumaric acid, and quercetin, have a broad spectrum of biological and therapeutic properties such as antidiabetic, anti-inflammatory, antioxidant, anticancer, rheumatoid arthritis, chronic obstruct pulmonary disorders, cardiovascular diseases, respiratory tract-related diseases, gastrointestinal disorders, as well as neuroprotective, immunomodulatory, and immuno-inflammatory agents. Therefore, this review aims to provide a summary of recent studies on the role of propolis, its constituents, its biologically active compounds, and their efficacy in the medicinal and pharmaceutical treatment of chronic diseases.  相似文献   
64.
65.
The overall stability constants of the 1:1 and 2:1 2-Carboxyphenylhydrazoacetoacetanilide (2-CPHAAA) and 2-Carboxyphenylhydrazobenzoylacetone (2-CPHBA) rare-earth chelates, were determined by a potentiometric method. The variation of the overall stability constants, “log β” with atomic number, of the lanthanide was ascribed to different degrees of dehydration of the cations. The 2-CPHBA ligand exhibited less affinity for rare earth cations than 2-CPHAAA. The correlation of “log β” versus the basicity of the ligands showed that 2-CPHAAA and 2-CPHBA form the same type of chelate in polar solvents but differ in non polar solvents.  相似文献   
66.
Theoretical calculations have been performed in the framework of density functional theory to characterize the effect of axial deformation on hydrogen storage of Ti decorated armchair (5,5) SWCNT. The theoretical characterization has been carried out in terms of H2 adsorption energies that are lying in the desirable energy window (?0.2 to ?0.6?eV) recommended by DOE, as well as a variety of physicochemical properties. A remarkable and significant change in H2 adsorption energy is observed under the effect of only (1%) axial strain. Axial relaxation leads to H2 adsorption energies within the recommended energy range for hydrogen storage, in contrast to axial compression. Simultaneous weakening of π and σ interactions, due to the effect of axial relaxation and loss of spatial orbital overlap, is in favor of hydrogen adsorption in the recommended energy range, and dominates the effect of charge transfer from Ti 3d to C 2p of the SWCNT. The calculated pairwise and non pairwise additive components confirm that the role of the SWCNT is not restricted to supporting the metal. Polarizability and hperpolarizabilty calculations as well as spectral analysis characterize the relaxed structure (Z?=?1.02), for which H2 adsorption energy (?0.34?eV) is in the recommended energy range for hydrogen storage, to be energetically more preferable than the compressed structure (Z?=?0.99). The results offer a way to control and characterize the hydrogenation process of metal functionalized SWCNTs by strain loading.  相似文献   
67.
Photoelectrodes of dye-sensitized solar cells (DSSCs) have been prepared using nanosized titanium dioxide that have soaked in a solution of different saffron (Crocus sativus L.) spice content in ethanol. The optimized polyacrylonitrile (PAN)-based gel polymer electrolyte with 40.93 wt.% ethylene carbonate, 37.97 wt.% propylene carbonate, 4.37 wt.% tetrapropylammonium iodide, 9.86 wt.% PAN, 1.24 wt.% 1-butyl-3-methylimidazolium iodide, 4.35 wt.% lithium iodide and 1.28 wt.% iodine has been used as the electrolyte for DSSC. The electrolyte has conductivity of 2.91 mS cm?1 at room temperature (298 K). DSSCs were also sensitized with saffron solution that has been added with 30 wt.% chenodeoxycholic acid (CDCA) co-adsorbent and designated as DSSC P4. The solar cell converts light-to-electricity at an efficiency of 0.31%. This is 29% enhancement in efficiency for the DSSC without addition of CDCA in the saffron-ethanol solution. The DSSC exhibits current density at short-circuit (J sc ) of 1.26 mA cm?2, voltage at open circuit (V oc ) of 0.48 V and 51% fill factor. DSSC P4 also exhibits the highest incident photon-to-current density of more than 40% at 340 nm wavelength.  相似文献   
68.
Treatment of indole with substituted aldehyde in the presence of equimolar amount of sodium bromate and sodium hydrogen sulfite mixture in water yielded corresponding substituted bis(indolyl)methanes in good yields. This provides a facile and environmentally friendly method towards the synthesis of an important class of organic compounds.  相似文献   
69.
Amino cellulose sulfate (ACS); namely 6-deoxy-6-(ω-aminoethyl) amino cellulose-2,3(6)-O-sulfate (AECS) and 6-deoxy-6-(2-(bis-N′,N′-(2-aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate (BAECS) were prepared by a three step synthesis starting with the functionalization of microcrystalline cellulose with p-toluenesulfonyl (tosyl) groups (degree of substitution, DSTos between 0.55 and 1.37). Subsequently the introduction of the sulfate moieties was carried out (DSSulf between 1.09 and 1.27) and the tosyl groups at position 6 were replaced by a nucleophilic substitution reaction. As nucleophilic agents 1,2-diaminoethane and tris-(2-aminoethyl)amine were applied, yielding AECS (DSAEA values between 0.41 and 0.86) and BAECS (DSBAEA values between 0.32 and 0.74), respectively. The ACS samples were characterized by means of elemental analysis, 13C-NMR-, FT-IR-, and UV–Vis spectroscopy. Moreover, the solubility of the samples in water at different pH values and the molecular weights of the samples in aqueous solution were studied.  相似文献   
70.
A simple, facile, efficient and three-components procedure for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrazolo[3,4-b]pyridines utilizing phenylsulfone synthon, under ultrasonic irradiation was developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号