首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   2篇
化学   104篇
晶体学   1篇
物理学   3篇
  2021年   1篇
  2018年   2篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
11.
Fluorine‐containing polyethers with pendant hydroxyl groups were synthesized by the polyaddition of fluorine‐containing bis(epoxide)s with certain fluorine‐containing diols with quaternary onium salts as catalysts. When the polyaddition was performed with 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol diglycidiyl ether and 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol, the corresponding polyether with pendant hydroxyl groups was successfully obtained in good yield. The polyaddition of certain fluorine‐containing bis(epoxide)s with diols also proceeded in bulk to provide the corresponding fluorine‐containing polyethers with high molecular weights. These polyethers were highly transparent at 157 nm for 0.1 μm thickness, with their transmittance of 14–75% at 157 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2543–2550, 2004  相似文献   
12.
Novel photosensitive polymers with pendant photosensitive group, such as cinnamic ester, and photosensitizer groups, such as N-carbamoyl-p-nitroaniline and N-carbamoly-4-nitro-1-naphthylamine, were synthesized from radical copolymerizations of (2-cinnamoyloxy)ethylmethacrylate with photosensitizer monomers, such as p-nitrophenylmethacrylamide and 4-nitro-1-na-phthylmethacrylamide, by using asobisisobutyronitrile (AIBN) in benzene and from the copolymerizations of (2-hydroxy)ethylmethacrylate or (2-hydroxy)ethylacrylate with photosensitizer monomers by using AIBN in DMF. This procedure was followed by condensation reactions of the copolymers with cinnamoyl chloride with pyridine as HCL acceptor in the same reaction flask. The photoreactivities of the polymers obtained were influenced by the concentration of photosensitive group and photosensitizer groups and their ratio in the polymer matrix. In addition, the photosensitivity of cinnamic ester groups attached to a soft polymer segment was higher than that of cinnamic ester group attached to a hard polymer segment when these polymers had the same pendant N-carbamoyl-p-nitroaniline group as photosensitizer. Furthermore, the spacer length between the polymer chain and photosensitizer group was important for increasing the photoreactivity of the photosensitive group in the polymers with pendant cinnamic ester and N-carbamoyl-p-nitroaniline groups.  相似文献   
13.
A novel strategy for the synthesis of layered organosilica is demonstrated. The ionic interaction between the anionic group of a surfactant (sodium dodecyl sulfate) and the cationic organic group of an organosilane (3-aminopropyltrimethoxysilane, ATMS) under acidic conditions was utilized to create a layered organosilica at room temperature. The inorganic part of the organosilica layer was an Si-O hexagonal sheet, and organofunctional groups were alternately arranged on both sides of the sheet. The layered structure of the ATMS organosilica was retained after the removal of the surfactant with chloride anion. The properties of the layered ATMS organosilica were investigated. The layered ATMS-Cl organosilica is stable and possesses a definite layer structure in water or ethanol. Various kinds of anions can be intercalated in the interlayer space of the layered ATMS organosilicas and the layer was expanded dependent on the intercalated anions. The structure of the layered ATMS organosilica was well retained during the intercalation processes.  相似文献   
14.
15.
Herein, we report use of [Li+@C60]TFSI? as a dopant for spiro‐MeOTAD in lead halide perovskite solar cells. This approach gave an air stability nearly 10‐fold that of conventional devices using Li+TFSI?. Such high stability is attributed to the hydrophobic nature of [Li+@C60]TFSI? repelling moisture and absorbing intruding oxygen, thereby protecting the perovskite device from degradation. Furthermore, [Li+@C60]TFSI? could oxidize spiro‐MeOTAD without the need for oxygen. The encapsulated devices exhibited outstanding air stability for more than 1000 h while illuminated under ambient conditions.  相似文献   
16.
The polycondensation of bis(4‐mercaptophenyl) sulfide (BMPS) with bis(4‐chloro‐3‐nitrophenyl) sulfone (BCNPS) was examined using various organic or inorganic bases in mixed solvents of N‐methyl‐2‐pyrrolidone (NMP) with water or in plain water. The reaction of BMPS with BCNPS proceeded smoothly to give the corresponding polysulfide in mixed solvents of NMP with water at 60 °C using 1,8‐diazabicyclo[5.4.0]undecene‐7 as a base, although the rate of the reaction decreased gradually as the water in the solvent increased. Polysulfide can also be obtained by reaction in plain water using appropriate organic bases such as tripropylamine (TPA) or quinoline. The polysulfide with a number‐average molecular weight of 45,100 was synthesized in 62% yield when the reaction of BMPS with BCNPS was performed using TPA as a base at 60 °C for 48 h in plain water. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3399–3404, 2000  相似文献   
17.
Silicon-containing divinyl ether monomers were synthesized by the addition reaction of glycidyl vinyl ether ( 1 ) with various silyl dichlorides using tetra-n-butylammonium bromide (TBAB) as a catalyst. The reaction of 1 with diphenyl dichlorosilane gave bis-[1-(chloromethyl)-2-(vinyloxy)-ethyl]diphenyl silane ( 3a ) in 89% yield. Polycondensations of 3a with terephthalic acid were also carried out using 1,8-Diazabicyclo[5.4.0]-7-undecene (DBU) to afford silicon-containing polyfunctional vinyl ether oligomers ( 5 ). A multifunctional Si-monomer with both vinyl ether and methacrylate groups ( 7 ) was prepared by the reaction of 3a with potassium methacrylate using TBAB as a phase transfer catalyst. Photoinitiated cationic polymerizations of these vinyl ether compounds proceeded rapidly using the sulfonium salt, bis-[4-(diphenyl-sulfonio)phenyl]sulfide-bis-hexafluorophoshate (DPSP), as the cationic photoinitiator in neat mixtures upon UV irradiation. Multifunctional monomer 7 with both vinyl ether and methacrylate groups showed “hybrid curing properties” using both DPSP and the radical photoinitiator, 2,4,6-trimethylbenzoyl diphenylphoshine oxide (TPO). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3217–3225, 1997  相似文献   
18.
Polyaddition of bis(4-mercaptophenyl) sulfide ( BMPS ) with m-phenylenebis(2-oxazoline) ( MPBO ) proceeded very smoothly in the mixtures of aprotic ploar solvents such as N-methyl-2-pyrrolidone ( NMP ) with water to produce the corresponding poly(amide–sulfide) with high molecular weights at 90°C under nitrogen. The reaction of BMPS with MPBO , p-phenylenebis(2-oxazoline), and 1,4-butylenebis(2-oxazoline) was also examined in water under the same conditions, and it was found that the reaction proceeds successfully to give the corresponding poly(amide–sulfide)s with high molecular weights. These results mean that water along as well as the mixed solvents of aprotic polar solvents such as NMP with water can be uses as suitable reaction media for the polyaddition of bis(oxazolines) with dithiol to synthesize poly(amide—sulfide)s with high molecular weights. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2711–2717, 1997  相似文献   
19.
Polysulfonates with reactive pendant chloromethyl groups were synthesized by polyadditions of bisepoxides with disulfonyl chlorides. The polyaddition of bisphenol A diglycidyl ether (BPGE) with m-benzene disulfonyl chloride (m-BDSC) occurred in anisole without any catalyst at 130°C for 24 h. However, polymer with high molecular weight was not obtained. On the other hand, the polyadditions of BPGE with m-BDSC proceeded very smoothly with high yield (81–91%) to give polymers with relatively high molecular weights in anisole at 130°C for 24 h when quaternary phosphonium salts were used as catalysts. The polyaddition was also enhanced by the addition of certain crown ether complexes. However, the catalytic activity of these compounds was less than those of quaternary phosphonium salts. Furthermore, polyadditions of certain bisepoxides with disulfonyl chlorides were also carried out to produce the corresponding polymers under the same reaction conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 249–256, 1998  相似文献   
20.
Hyperbranched and branched polymers were synthesized by one-pot reaction of the AB2 monomer 4-(4′-chloromethylbenzyloxy)phenylacetonitrile (1 ). The polymerization of 1 was controlled by adding a chloromethylarene (A1 comonomer) such as methoxybenzyl chloride and by adding TBAC (tetrabutylammonium chloride). Copolymerization of 1 with A2 comonomers, bis(chloromethyl)arenes, gives the corresponding copolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号