首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1508篇
  免费   21篇
  国内免费   3篇
化学   1232篇
晶体学   18篇
力学   25篇
数学   71篇
物理学   186篇
  2022年   6篇
  2021年   10篇
  2020年   18篇
  2019年   14篇
  2018年   13篇
  2016年   25篇
  2015年   18篇
  2014年   30篇
  2013年   72篇
  2012年   43篇
  2011年   68篇
  2010年   44篇
  2009年   32篇
  2008年   84篇
  2007年   77篇
  2006年   68篇
  2005年   77篇
  2004年   74篇
  2003年   76篇
  2002年   96篇
  2001年   27篇
  2000年   24篇
  1999年   13篇
  1998年   18篇
  1997年   25篇
  1996年   23篇
  1995年   12篇
  1994年   20篇
  1993年   25篇
  1992年   14篇
  1991年   21篇
  1990年   17篇
  1989年   11篇
  1988年   14篇
  1987年   13篇
  1986年   6篇
  1985年   30篇
  1984年   35篇
  1983年   14篇
  1982年   28篇
  1981年   32篇
  1980年   27篇
  1979年   28篇
  1978年   18篇
  1977年   14篇
  1976年   11篇
  1975年   12篇
  1974年   15篇
  1973年   10篇
  1970年   6篇
排序方式: 共有1532条查询结果,搜索用时 0 毫秒
91.
Adenosylhopane is a crucial intermediate in the biosynthesis of bacteriohopanepolyols, which are widespread prokaryotic membrane lipids. Herein, it is demonstrated that reconstituted HpnH, a putative radical S‐adenosyl‐l ‐methionine (SAM) enzyme, commonly encoded in the hopanoid biosynthetic gene cluster, converts diploptene into adenosylhopane in the presence of SAM, flavodoxin, flavodoxin reductase, and NADPH. NMR spectra of the enzymatic reaction product were identical to those of synthetic (22R)‐adenosylhopane, indicating that HpnH catalyzes stereoselective C?C formation between C29 of diploptene and C5′ of 5′‐deoxyadenosine. Further, the HpnH reaction in D2O‐containing buffer revealed that a D atom was incorporated at the C22 position of adenosylhopane. Based on these results, we propose a radical addition reaction mechanism catalyzed by HpnH for the formation of the C35 bacteriohopane skeleton.  相似文献   
92.
Helical carbazole‐based BODIPY analogues were readily synthesized via aza[7]helicenes. The structures of azahelicene‐incorporated BF2 dyes were elucidated by x‐ray diffraction analysis. DFT calculations revealed that the π‐conjugated system expanded from the helicene moiety to the BODIPY framework. The azahelicene‐fused boron complexes showed the Cotton effects and the circularly polarized luminescence (CPL) in the visible region. Furthermore, an axially chiral binaphthyl group was attached to the helically chiral dyes, which enhanced the chiroptical properties.  相似文献   
93.
The reducing tetrasaccharide TMG-chitotriomycin (1) is an inhibitor of β-N-acetylglucosaminidase (GlcNAcase), produced by the actinomycete Streptomyces anulatus NBRC13369. The inhibitor shows a unique inhibitory spectrum, that is, selectivity toward enzymes from chitin-containing organisms such as insects and fungi. Nevertheless, its structure-selectivity relationship remains to be clarified. In this study, we conducted a structure-guided search of analogues of 1 in order to obtain diverse N,N,N-trimethylglucosaminium (TMG)-containing chitooligosaccharides. In this approach, the specific fragmentation profile of 1 on ESI-MS/MS analysis was used for the selective detection of desired compounds. As a result, two new analogues, named TMG-chitomonomycin (3) and TMG-chitobiomycin (2), were obtained from a culture filtrate of 1-producing Streptomyces. Their enzyme-inhibiting activity revealed that the potency and selectivity depended on the degree of polymerization of the reducing end GlcNAc units. Furthermore, a computational modeling study inspired the inhibitory mechanism of TMG-related compounds as a mimic of the substrate in the Michaelis complex of the GH20 enzyme. This study is an example of the successful application of a MS/MS experiment for structure-guided isolation of natural products.  相似文献   
94.
A series of zinc(II) porphyrin-imide dyads (ZP-Im), in which an electron donating ZP moiety is directly connected to an electron accepting imide moiety in the meso position, have been prepared for the examination of energy gap dependence of intramolecular electron transfer reactions with large electronic coupling. The nearly perpendicular conformation of the imide moiety towards the porphyrin plane has been revealed by Xray crystal structures. The energy gap for charge separation, 1ZP* - Im --> ZP+ - Im-, is varied by changing the electron accepting imide moiety to cover a range of about 0.8 eV in DMF. Definitive evidence for electron transfer has been obtained in three solvents (toluene, THF, and DMF) through picosecond-femtosecond transient absorption studies, which have allowed us to determine the rates of photoinduced charge separation, 1ZP* - Im --> ZP+ - Im-, and subsequent thermal charge recombination ZP+ - Im- --> ZP - Im. The free-energy gap dependence (energy gap law) has been probed from the normal to the nearly top region for the charge separation rate alone, and only the inverted region for the charge recombination rate. Although both of the energy gap dependencies can be approximately reproduced by means of the simplified semiclassical equation, when we take into consideration the effect of the high frequency vibrations replaced by one mode of averaged frequency, many features, including the effects of solvent polarity and the electron tunneling matrix element on the energy gap law, differ considerably from those of the previously studied porphyrin-quinone systems, which have weaker interchromophore electronic interactions.  相似文献   
95.
Oxophilic synthetic receptors were designed and synthesized using a porphyrin scaffold, with the aim of constructing a preorganized complementary binding site for phenols and carbohydrates. We pursued three strategies for phenol recognition: (1) Lewis acid/Lewis base combinations serving as a hydrogen bond donor and acceptor for the OH group, (2) Lewis base/pi-pi stacking, targeting both the OH group and the aromatic moiety of phenols, and (3) exchange of the axial hydroxyl ligand on a trivalent and oxophilic metal center of aluminum porphyrin. For the recognition of acidic phenols, the most promising recognition motif was Lewis base/pi-pi stacking, which can bind to phenols with a hydrogen bond and pi-pi stacking interactions. [5-(8-Quinolyl)-10,15,20-triphenylporphyrinato]zinc binds to p-nitrophenol with a binding constant of 540 M(-)(1) in CHCl(3) at 25 degrees C. For carbohydrate recognition, we designed the metalloporphyrin receptor having 8-quinolyl groups and o-carbomethoxymethoxyphenyl groups, where these Lewis basic parts serve as the cooperative hydrogen bonding sites for the hydroxyl groups of glucoside. The receptor binds to beta-octyl glucoside with a binding constant of 7.35 x 10(4) M(-)(1) in CHCl(3) at 15 degrees C, demonstrating importance of formation of a highly ordered hydrogen bonding network between the receptor and the guest. These binding features have significant implications for the rational design of oxophilic artificial receptors.  相似文献   
96.
Ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid was theoretically investigated with DFT and MP4(SDQ) methods, where a real catalyst, cis-Ru(H)2(PMe3)3, was employed in calculations and compared with a model catalyst, cis-Ru(H)2(PH3)3. Significant differences between the real and model systems are observed in CO2 insertion into the Ru(II)-H bond, isomerization of a ruthenium(II) eta1-formate intermediate, and metathesis of the eta1-formate intermediate with a dihydrogen molecule. All these reactions more easily occur in the real system than in the model system. The differences are interpreted in terms that PMe3 is more donating than PH3 and the trans-influence of PMe3 is stronger than that of PH3. The rate-determining step is the CO2 insertion into the Ru(II)-H bond. Its deltaG(o++) value is 16.8 (6.8) kcal/mol, where the value without parentheses is calculated with the MP4(SDQ) method and that in parentheses is calculated with the DFT method. Because this insertion is considerably endothermic, the coordination of the dihydrogen molecule with the ruthenium(II)-eta1-formate intermediate must necessarily occur to suppress the deinsertion. This means that the reaction rate increases with increase in the pressure of dihydrogen molecule, which is consistent with the experimental results. Solvent effects were investigated with the DPCM method. The activation barrier and reaction energy of the CO2 insertion reaction moderately decrease in the order gas phase > n-heptane > THF, while the activation barrier of the metathesis considerably increases in the order gas phase < n-heptane < THF. Thus, a polar solvent should be used because the insertion reaction is the rate-determining step.  相似文献   
97.
Treatment of cyclopropylsilylmethanols derived from cyclopropyl silyl ketones with acid catalyst gives the corresponding silyl-substituted homoallyl derivatives in high yields with good stereoselectivity, independent of the substituents on the cyclopropyl ring. Cyclopropylsilylmethanols having a n-, s-butyl or phenyl group on the carbinyl carbon react to afford the E-homoallyl derivatives selectively. On the other hand, the reaction of cyclopropylsilylmethanols having a tert-butyl group gives Z-isomers exclusively. The following protiodesilylation of the resulting homoallyl derivatives proceeds with retention of configuration.  相似文献   
98.
Cobalt‐based compounds, such as cobalt(II) hydroxide, are known to be good catalysts for water oxidation. Herein, we report that such cobalt species can also activate wide‐band‐gap semiconductors towards visible‐light water oxidation. Rutile TiO2 powder, a well‐known wide‐band‐gap semiconductor, was capable of harvesting visible light with wavelengths of up to 850 nm, and thus catalyzed water oxidation to produce molecular oxygen, when decorated with cobalt(II) hydroxide nanoclusters. To the best of our knowledge, this system constitutes the first example that a particulate photocatalytic material that is capable of water oxidation upon excitation by visible light can also operate at such long wavelengths, even when it is based on earth‐abundant elements only.  相似文献   
99.
Reversible and non‐bonding interaction between SWNTs and ODCB is observed from the analyses of visible near‐infrared absorption data and Raman spectroscopies (see spectra). The solvent effect on SWNTs effectively controls the electronic structure of SWNTs under homogeneous conditions.

  相似文献   

100.
Biologically important and structurally unique marine natural products avarone (1), avarol (2), neoavarone (3), neoavarol (4) and aureol (5), were efficiently synthesized in a unified manner starting from (+)-5-methyl-Wieland-Miescher ketone 10. The synthesis involved the following crucial steps: i) Sequential BF(3)Et(2)O-induced rearrangement/cyclization reaction of 2 and 4 to produce 5 with complete stereoselectivity in high yield (2 --> 5 and 4 --> 5); ii) strategic salcomine oxidation of the phenolic compounds 6 and 8 to derive the corresponding quinones 1 and 3 (6 --> 1 and 8 --> 3); and iii) Birch reductive alkylation of 10 with bromide 11 to construct the requisite carbon framework 12 (10 + 11 --> 12). An in vitro cytotoxicity assay of compounds 1-5 against human histiocytic lymphoma cells U937 determined the order of cytotoxic potency (3 > 1 > 5 > 2 > 4) and some novel aspects of structure-activity relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号