首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   7篇
化学   147篇
力学   2篇
数学   2篇
物理学   49篇
  2019年   1篇
  2018年   3篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   10篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   11篇
  2005年   10篇
  2004年   9篇
  2003年   18篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1994年   4篇
  1993年   3篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   9篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有200条查询结果,搜索用时 437 毫秒
11.
12.
This work reports the use of reverse-phase liquid chromatography coupled to electrospray ion trap (QIT) mass spectrometry for the analysis of the metabolome in rat urine. An injection of 20 microL of urine into the chromatographic system is followed by a slow gradient elution and mass spectrometric detection in the scanning mode from m/z 100-1000 in both positive and negative modes. Over a time scale of 90 min, 30 and 20 resolved peaks were observed in the positive and the negative modes, respectively, corresponding to the presence of a few hundred m/z ratios. By using a QIT analyzer, data-dependent tandem mass spectrometry of selected m/z ratios identified several compounds in rat urine and characterized various chemical families, including carboxylic acids, amines, sulfated compounds, glucuronides and glycosides, by the observation of characteristic fragment ions or neutral losses. The method has been applied to the investigation of the chronic toxicity of heavy metals in rat urine. A few tens of m/z ratios, differing in intensity more than threefold from control values, were observed in both positive and negative modes. The time variations for some selected ions suggest that LC/ESI-MS could allow selective characterization of biomarkers in response to specific toxic compounds.  相似文献   
13.
14.
The tripodal ligand N,N,N-tris[(1,hydroxy-2-pyridinon-6-yl)amide]propylamine was synthesized. It is composed of an anchor (nitrogen atom), a functional group (hydroxamate), and also a spacer of variable length defined by the number of methylene groups linking the anchor and the functional group. The characterization of this ligand in the presence of several divalent metal cations (Fe(II), Mn(II), Co(II) and Cu(II)), performed by electrospray ionization mass spectrometry (ESI-MS and ESI-MS/MS), allowed elucidation of oxidation states and also of different fragmentation patterns. The importance of the spacer length was studied in the case of the iron binary complex by comparing this ligand with another with a shorter spacer. In this way the stabilizing conditions, in which hydrogen bonds are implicated, were clarified.  相似文献   
15.
16.
The kinetic method is a widely used approach for the determination of thermochemical data such as proton affinities (PA) and gas-phase acidities (ΔH° acid ). These data are easily obtained from decompositions of noncovalent heterodimers if care is taken in the choice of the method, references used, and experimental conditions. Previously, several papers have focused on theoretical considerations concerning the nature of the references. Few investigations have been devoted to conditions required to validate the quality of the experimental results. In the present work, we are interested in rationalizing the origin of nonlinear effects that can be obtained with the kinetic method. It is shown that such deviations result from intrinsic properties of the systems investigated but can also be enhanced by artifacts resulting from experimental issues. Overall, it is shown that orthogonal distance regression (ODR) analysis of kinetic method data provides the optimum way of acquiring accurate thermodynamic information.   相似文献   
17.
Control of the ion internal energy in mass spectrometry is needed to establish a workable mass spectral library. The purpose of this study is to understand and to compare the pressure effects on the collision‐induced dissociation (CID) spectrum pattern recorded using triple quadrupole instruments. The monoprotonated Leucine enkephalin [YGGFL, H+] was used as a thermometer molecule to calibrate the electrospray ionization (ESI) and the CID internal energies deposited on the molecular species and the time scale of ion decompositions. The survival yield and the ratio of a4/b4 fragment ions were mainly monitored. The energy uptake for the ESI source geometry used in our study has no impact on the CID spectrum fingerprint. The collision cell pressure for the [YGGFL, H+] has a major influence on the SY curves slope and on the experimental time scale. To demonstrate the pressure effect on internal energy distribution, three models (threshold, thermal and collisional) based on RRKM theory were built using the Masskinetics software. As a result, the limit of each model is discussed, and the investigation demonstrates that the thermal model, using truncated Maxwell‐Boltzmann internal energy distribution, is well‐suited for simulating the experimental data at high pressure widely used in the analytical conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
Structural elucidation and distinction of isomeric neurotoxic agents remain a challenge. Tandem mass spectrometry can be used for this purpose in particular if a “diagnostic” product ion is observed. Different vibrational activation methods were investigated to enhance formation of diagnostic ions through consecutive processes from O,O-dialkyl alkylphosphonates. Resonant and non-resonant collisional activation and infrared multiphoton dissociation (IRMPD) were used with different mass spectrometers: a hybrid quadrupole Fourier transform ion cyclotron resonance (Qh-FTICR) and a hybrid linear ion trap-Orbitrap (LTQ/Orbitrap). Double resonance (DR) experiments, in ion cyclotron resonance (ICR) cell, were used for unambiguous determination of direct intermediate yielding diagnostic ions. From protonated n-propyl and isopropyl O-O-dialkyl-phosphonates, a diagnostic m/z 83 ion characterizes the isopropyl isomer. This ion is produced through consecutive dissociation processes. Conditions to favor its formation and observation using different activation methods were investigated. It was shown that with the LTQ, consecutive experimental steps of isolation/activation with modified trapping conditions limiting the low mass cut off (LMCO) effect were required, whereas with FT-ICR by CID and IRMPD the diagnostic ion detection was provided only by one activation step. Among the different investigated activation methods it was shown that by using low-pressure conditions or using non-resonant methods, efficient and fast differentiation of isomeric neurotoxic agents was obtained. This work constitutes a unique comparison of different activation modes for distinction of isomers showing the instrumental dependence characteristic of the consecutive processes. New insights in the dissociation pathways were obtained based on double-resonance IRMPD experiments using a FT-ICR instrument with limitation at low mass values.
?  相似文献   
19.
The existence of gas‐phase electrostatic ion–ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn1, Val5]‐Angiotensin II) and attaching anions (ClO4? and HSO4?) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion–ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4]?, under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4? and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion–ion interaction. The strength and stability of this type of ion‐pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion–ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
20.
Reproducibility among different types of excitation modes is a major bottleneck in the field of tandem mass spectrometry library development in metabolomics. In this study, we specifically evaluated the influence of collision voltage and activation time parameters on tandem mass spectrometry spectra for various excitation modes [collision‐induced dissociation (CID), pulsed Q dissociation (PQD) and higher‐energy collision dissociation (HCD)] of Orbitrap‐based instruments. For this purpose, internal energy deposition was probed using an approach based on Rice–Rampserger–Kassel–Marcus modeling with three thermometer compounds of different degree of freedom (69, 228 and 420) and a thermal model. This model treats consecutively the activation and decomposition steps, and the survival precursor ion populations are characterized by truncated Maxwell–Boltzmann internal energy distributions. This study demonstrates that the activation time has a significant impact on MS/MS spectra using the CID and PQD modes. The proposed model seems suitable to describe the multiple collision regime in the PQD and HCD modes. Linear relationships between mean internal energy and collision voltage are shown for the latter modes and the three thermometer molecules. These results suggest that a calibration based on the collision voltage should provide reproducible for PQD, HCD to be compared with CID in tandem in space instruments. However, an important signal loss is observed in PQD excitation mode whatever the mass of the studied compounds, which may affect not only parent ions but also fragment ions depending on the fragmentation parameters. A calibration approach for the CID mode based on the variation of activation time parameter is more appropriate than one based on collision voltage. In fact, the activation time parameter in CID induces a modification of the collisional regime and thus helps control the orientation of the fragmentation pathways (competitive or consecutive dissociations). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
[首页] « 上一页 [1] 2 [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号