首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   7篇
化学   146篇
力学   1篇
物理学   13篇
  2024年   1篇
  2019年   1篇
  2018年   3篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   18篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
91.
Guanine tetraplexes are biological non-covalent systems stabilized by alkali cations. Thus, self-clustering of guanine, xanthine and hypoxanthine with alkali cations (Na(+), K(+) and Li(+)) is investigated by electrospray ionization mass spectrometry (ESI-MS) in order to provide new insights into G-quartets, hydrogen-bonded complexes. ESI assays displayed magic numbers of tetramer adducts with Na(+), Li(+) and K(+), not only for guanine, but also for xanthine bases. The optimized structures of guanine and xanthine quartets have been determined by B3LYP hybrid density functional theory calculations. Complexes of metal ions with quartets are classified into different structure types. The optimized structures obtained for each quartet explain the gas-phase results. The gas-phase binding sequence between the monovalent cations and the xanthine quartet follows the order Li(+) > Na(+) > K(+), which is consistent with that obtained for the guanine quartet in the literature. The smallest stabilization energy of K(+) and its position versus the other alkali metal ions in guanine and xanthine quartets is consistent with the fact that the potassium cation can be located between two guanine or xanthine quartets, for providing a [gua(or (xan))(8)+K](+) octamer adduct. Even if an abundant octamer adduct with K(+) for xanthine was detected by ESI-MS, it was not the case for guanine.  相似文献   
92.
Monolacunary polyoxotungstates [alpha(1)-P(2)W(17)O(61)](10-) and [alpha-PW(11)O(39)](7-) react with HfCl(4) to yield [alpha(1)-HfP(2)W(17)O(61)](6-) and [alpha-Hf(OH)PW(11)O(39)](4-), isolated as organo-soluble tetrabutylammonium (TBA) salts. Subsequent analyses, including mass spectrometry, show that they are stronger Lewis acids than (TBA)(5)H(2)[alpha(1)-YbP(2)W(17)O(61)]. The new polyoxotungstates catalyze Lewis acid mediated organic reactions, such as Mukaiyama aldol and Mannich-type additions. In particular, reactions with aldehydes, which were impossible with lanthanide polyoxotungstates, are made possible. Thus these modifications of the polyoxometalate composition allowed fine tuning of the Lewis acidity. The catalysts could be easily recovered and reused.  相似文献   
93.
Six ergot alkaloids belonging to the lysergic acid derivatives (ergonovine (EGN) and methysergide hydrogen maleinate (MHM)) and peptide-type derivatives (ergocristine (EGR), ergotamine (EGT), ergocornine (EGC) and alpha-ergokryptine (EGK)) were studied by positive electrospray tandem mass spectrometry. The fragmentation mechanisms of these compounds were studied by collision-induced dissociation (CID) using triple quadrupole and ion trap mass spectrometers, and the nature of the major product ions further confirmed by hydrogen/deuterium (H/D) exchange experiments. A common abundant product ion at m/z 223 was characteristic of the two classes of ergot alkaloids. Therefore, a precursor ion scan of m/z 223 that triggers information data acquisition (IDA) in combination with CID experiments was used to identify other potential ergot alkaloids. Using this approach, it was possible to confirm the presence of ergosine, another peptide-type ergot alkaloid, in a rye flour extract at trace levels.  相似文献   
94.
95.
96.
97.
Electron detachment dissociation (EDD) and electron photodetachment dissociation (EPD) are relatively new dissociation methods that involve electron detachment followed by radical‐driven dissociation from multiply deprotonated species. EDD yields prompt dissociation whereas only electron detachment is obtained by EPD; subsequent vibrational activation of the charge‐reduced radical anion is required to obtain the product ions. Herein, the fragmentation patterns that were obtained by EDD and by vibrational activation of the charge‐reduced radical anions that were produced through EDD or EPD (activated‐EDD and activated‐EPD) were compared. The observed differences were related to the dissociation kinetics and/or the contribution of electron‐induced dissociation (EID). Time‐resolved double‐resonance experiments were performed to measure the dissociation rate constants of the EDD product ions. Differences in the formation kinetics were revealed between the classical EDD/EPD ′a.i/′′xj complementary ions and some ′a.i/ci/′′′z.j product ions, which were produced with slower dissociation rate constants, owing to the presence of specific neighbouring side chains. A new fragmentation pathway is proposed for the formation of the slow‐kinetics ′a.i ions.  相似文献   
98.
Tetracosactide (Synacthen), a synthetic analogue of adrenocorticotropic hormone (ACTH), can be used as a doping agent to increase the secretion of glucocorticoids by adrenal glands. The only published method for anti-doping control of this drug in plasma relies on purification by immunoaffinity chromatography and LC/MS/MS analysis. Its limit of detection is 300 pg/mL, which corresponds to the peak value observed 12 h after 1 mg Synacthen IM administration. We report here a more sensitive method based on preparation of plasma by cation exchange chromatography and solid-phase extraction and analysis by LC/MS/MS with positive-mode electrospray ionization using 7–38 ACTH as internal standard. Identification of Synacthen was performed using two product ions, m/z 671.5 and m/z 223.0, from the parent [M?+?5H]5+ ion, m/z 587.4. The recovery was estimated at 70%. A linear calibration curve was obtained from 25 to 600 pg/mL (R 2?>?0.99). The lower limit of detection was 8 pg/mL (S/N?>?3). The lower limit of quantification was 15 pg/mL (S/N?>?10; CV%?相似文献   
99.
The reactivity of the explosive tetryl (N‐methyl‐N,2,4,6‐tetranitroaniline; Mw = 287 u) was studied using electrospray ionization in negative mode. The main species detected in the spectrum corresponds to the ion observed at m/z 318 (previously assumed to be the odd‐electron ion [tetryl + HNO]‐?, C7H6O9N6). In this study, we show using D‐labeling combined with high‐resolution mass spectrometry that this species corresponds to an even‐electron anion (i.e. C8H8O9N5), resulting from the formation of a Meisenheimer complex between tetryl and the methanol used as the solvent. Fragmentation of this complex under CID conditions revealed an unexpected fragment: the formation of a 2,4,6‐trinitrophenoxide anion at m/z 228. 18O‐labeling combined with quantum chemical calculations helped us better understand the reaction pathways and mechanisms involved in the formation of this product ion. This occurs via a transition state leading to a SN2‐type reaction, consequently evolving toward an ion‐dipole complex. The latter finally dissociates into deprotonated picric acid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
100.
Liquid-liquid extraction of zirconium, one of the most important fission products, was followed using electrospray ionization mass spectrometry under conditions simulating reprocessing of nuclear spent fuel. Zr(IV) can precipitate from the organic phase after extraction by dibutylphosphoric acid (HDBP), the most common degradation product of tributylphosphate (TBP) radiolysis. Different complexes were detected with electrospray used in positive or negative ion modes, according to the extraction conditions such as the ligand/metal ratio. Stoichiometry of the Zr(IV) complexes was determined by combining isotopic labeling [H(15)NO(3)] of the aqueous phase in the extraction system and tandem mass spectrometry experiments. These results were compared with the species observed using other techniques reported in the literature. The mechanisms of ionization/desorption of these complexes are proposed depending on the organic ligand character (neutral (L) such as TBP, or acidic (HL') such as HDBP), and the ionization mode used. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号