首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
化学   38篇
物理学   2篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2014年   1篇
  2013年   1篇
  2012年   7篇
  2011年   6篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
11.
As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which covers gas dynamics,aeroacoustics,nonlinear thermoviscous acoustics,viscous shock layer,etc.,as its special branches.The principle on which our formulation is based is the maximally natural and dynamic Helmholtz decomposition of the Navier-Stokes equation,along with the kinematic Helmholtz decompos...  相似文献   
12.
The reaction of ceric ammonium nitrate, (NH4)2[Ce(NO3)6] or CAN, with naphthalene and 2-methylnaphthalene in the ionic liquid 1-ethyl-3-methylimidazolium triflate showed that the reaction products are strongly dependent on the water content of the ionic liquid and that cerium(IV) in the ionic liquid can electrochemically be regenerated.  相似文献   
13.
Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.  相似文献   
14.
Trinuclear heterobimetallic Ln(III)-Ru(II) complexes (Ln = Eu, Gd) based on a 1,10-phenanthroline ligand bearing a diethylenetriaminepentaacetic acid (DTPA) core have been synthesized and fully characterized by a range of experimental techniques. The (17)O NMR and proton nuclear magnetic relaxation dispersion (NMRD) measurements of Gd(III)-Ru(II) show that, in comparison to the parent Gd-DTPA, this complex exhibits improved relaxivity, which is the result of an increase of the rotational correlation time. Relaxometry and ultrafiltration experiments indicate that the 1,10-phenanthroline ligand has a high affinity for noncovalent binding to human serum albumin, which results in a high relaxivity r(1) of 14.3 s(-1) mM(-1) at 20 MHz and 37 °C. Furthermore, the Ln(III)-Ru(II) complexes (Ln = Eu, Gd) show an intense light absorption in the visible spectral region due to metal-to-ligand charge transfer (MLCT) transitions. Upon excitation into the MLCT band at 440 nm, the complexes exhibit a bright-red luminescence centered at 610 nm, with a quantum yield of 4.7%. The luminescence lifetime equals 540 ns and is therefore long enough to exceed the fluorescent background. Monometallic lanthanide complexes have also been synthesized, and the Eu(III) analogue shows a characteristic red luminescence with a quantum yield of 0.8%. Taking into account the relaxometric and luminescent properties, the developed Gd(III)-Ru(II) complex can be considered as a potential in vitro bimodal imaging agent.  相似文献   
15.
A ditopic DTPA monoamide derivative containing an 8-hydroxyquinoline moiety was synthesized and the corresponding gadolinium(iii) complex ([Gd(H5)(H(2)O)](-)) was prepared. After adding aluminum(iii), the 8-hydroxyquinoline part self-assembled into a heteropolymetallic triscomplex [(Gd5)(3)Al(H(2)O)(3)](3-). The magnetic and optical properties of this metallostar compound were investigated in order to classify it as a potential in vitro bimodal contrast agent. The proton nuclear magnetic relaxation dispersion measurements indicated that the relaxivity r(1) of [Gd(H5)(H(2)O)](-) and [(Gd5)(3)Al(H(2)O)(3)](3-) at 20 MHz and 310 K equaled 6.17 s(-1) mM(-1) and 10.9 s(-1) mM(-1) per Gd(iii) ion respectively. This corresponds to a relaxivity value of 32.7 s(-1) mM(-1) for the supramolecular complex containing three Gd(iii) ions. The high relaxivity value is prominently caused by an increase of the rotational tumbling time τ(R) by a factor of 2.7 and 5.5 respectively, in comparison with the commercially used MRI contrast agent Gd(iii)-DTPA (Magnevist?). Furthermore, upon UV irradiation, [(Gd5)(3)Al(H(2)O)(3)](3-) exposes green broad-band emission with a maximum at 543 nm. Regarding the high relaxivity and the photophysical properties of the [(Gd5)(3)Al(H(2)O)(3)](3-) metallostar compound, it can be considered as a lead compound for in vitro bimodal applications.  相似文献   
16.
Hydrolysis of dipeptides glycylserine (Gly-Ser), leucylserine (Leu-Ser), histidylserine (His-Ser), glycylalanine (Gly-Ala), and serylglycine (Ser-Gly) was examined in vanadate solutions by means of (1)H, (13)C, and (51)V NMR spectroscopy. In the presence of a mixture of oxovanadates, the hydrolysis of the peptide bond in Gly-Ser proceeds under the physiological pH and temperature (37 °C, pD 7.4) with a rate constant of 8.9 × 10(-8) s(-1). NMR and EPR spectra did not show evidence for the formation of paramagnetic species, excluding the possibility of V(V) reduction to V(IV) and indicating that the cleavage of the peptide bond is purely hydrolytic. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest hydrolysis observed at pD 7.4. Combined (1)H, (13)C, and (51)V NMR experiments revealed formation of three complexes between Gly-Ser and vanadate, of which only one complex, designated Complex 2, formed via coordination of amide oxygen and amino nitrogen to vanadate, is proposed to be hydrolytically active. Kinetic experiments at pD 7.4 performed by using a fixed amount of Gly-Ser and increasing amounts of Na(3)VO(4) allowed calculation of the formation constant for the Gly-Ser/VO(4)(3-) complex (K(f) = 16.1 M(-1)). The structure of the hydrolytically active Complex 2 is suggested also on the basis of DFT calculations. The energy difference between Complex 2 and the major complex detected in the reaction mixture, Complex 1, is calculated to be 7.1 kcal/mol in favor of the latter. The analysis of the molecular properties of Gly-Ser and their change upon different modes of coordination to the vanadate pointed out that only in Complex 2 the amide carbon is suitable for attack by the hydroxyl group in the Ser side chain, which acts as an effective nucleophile. The origin of the hydrolytic activity of vanadate is most likely a combination of the polarization of amide oxygen in Gly-Ser due to the binding to vanadate, followed by the intramolecular attack of the Ser hydroxyl group.  相似文献   
17.
In this study, mechanisms of hydrolysis of all four chemically diverse cleavage sites of human serum albumin (HSA) by [Zr(OH)(PW11O39)]4− (ZrK) have been investigated using the hybrid two-layer QM/MM (ONIOM) method. These reactions have been proposed to occur through the following two mechanisms: internal attack (IA) and water assisted (WA). In both mechanisms, the cleavage of the peptide bond in the Cys392-Glu393 site of HSA is predicted to occur in the rate-limiting step of the mechanism. With the barrier of 27.5 kcal/mol for the hydrolysis of this site, the IA mechanism is found to be energetically more favorable than the WA mechanism (barrier = 31.6 kcal/mol). The energetics for the IA mechanism are in line with the experimentally measured values for the cleavage of a wide range of dipeptides. These calculations also suggest an energetic preference (Cys392-Glu393, Ala257-Asp258, Lys313-Asp314, and Arg114-Leu115) for the hydrolysis of all four sites of HSA. © 2018 Wiley Periodicals, Inc.  相似文献   
18.
The first example of a phosphodiester bond cleavage promoted by a highly negatively charged polyoxometalate cluster has been discovered: the hydrolysis of the phosphodiester bond in a DNA model substrate bis(p-nitrophenyl)phosphate (BNPP) is promoted by the heptamolybdate anion [Mo7O24](6-) with rates which represent an acceleration of nearly four orders of magnitude compared to the uncatalyzed cleavage.  相似文献   
19.
The development of artificial proteases is challenging, but important for many applications in modern proteomics and biotechnology. The hydrolysis of hydrophobic or unstructured proteins is particularly difficult due to their poor solubility, which often requires the presence of surfactants. Herein, it is shown that a zirconium(IV)-substituted Keggin polyoxometalate (POM), (Et2NH2)10[Zr(α-PW11O39)2] ( 1 ), is able to selectively hydrolyze β-casein, which is an intrinsically unstructured protein at pH 7.4 and 60 °C. Four surfactants (sodium dodecyl sulfate (SDS), N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (ZW3-12), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), and polyethylene glycol tert-octylphenyl ether (TX-100)), which differ in the nature of their polar groups, were investigated for their role in influencing the selectivity and efficiency of protein hydrolysis. Under experimental conditions, β-casein forms micellar structures in which the hydrophilic part of the protein is water accessible and able to interact with 1 . Identical fragmentation patterns of β-casein in the presence of 1 were observed through SDS poly(acrylamide) gel electrophoresis both in the presence and absence of surfactants, but the rate of hydrolysis varied, depending on the nature of surfactant. Whereas TX-100 surfactant, which has a neutral polar head, caused only a slight decrease in the hydrolysis rate, stronger inhibition was observed in the presence surfactants with charges in their polar heads (CHAPS, ZW3-12, SDS). These results were consistent with those of tryptophan fluorescencequenching studies, which showed that the binding between β-casein and 1 decreased with increasing repulsion between the POM and the polar heads of the surfactants. In all cases, the micellar structure of β-casein was not significantly affected by the presence of POM or surfactants, as indicated by circular dichroism spectroscopy.  相似文献   
20.
The specific interactions of anionic metal-oxo clusters, known as polyoxometalates (POMs), with proteins can be leveraged for a wide range of analytical and biomedical applications. For example, POMs have been developed as selective catalysts that can induce protein modifications and have also been shown to facilitate protein crystallization, both of which are instrumental in the structural characterization of proteins. POMs can also be used for selective protein separation and enzyme inhibition, which makes them promising therapeutic agents. Hence, understanding POM-protein interactions is essential for the development of POM-based materials and their implementation in several fields. In this Review we summarize in detail the key insights that have been gained so far on POM-protein interactions. Emphasis is also given to hybrid POMs functionalized with organic ligands to prompt further research in this direction owing to the promising recent results on tuning POM-protein interactions through POM functionalization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号