首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
化学   45篇
物理学   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1994年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
11.
The synthesis of a panel of arabinofuranosyl oligosaccharide analogues (5-13) in which one ring is locked into either the E(3) or OE conformation is described. The E(3)-locked scaffolds 15 and 16 required for the synthesis of 5-10 were prepared in one step from known 1,5-anhydroalditols. A number of routes were explored for the preparation of the OE-locked monosaccharide derivative 17 needed for the preparation of 11-13. The successful synthesis of 17 was achieved in 17 steps from D-arabinose. Subsequent analysis of 5-13 by 1H NMR spectroscopy demonstrated that the locked residue does not exert any detectable influence upon the conformers populated by adjacent conformationally unrestricted furanose rings.  相似文献   
12.
The synthesis of a series of 2-(alkylamino)pyridines (1) in three steps from 2-aminopyridine (4) is reported. The products were obtained in 67-91% overall yield from 4.  相似文献   
13.
The 126 possible conformations of 1,2,3-propanetriol (glycerol) have been studied by ab initio molecular orbital and density functional theory calculations in the gas and aqueous phases at multiple levels of theory and basis sets. The partial potential energy surface for glycerol as well as an analysis of the conformational properties and hydrogen-bonding trends in both phases have been obtained. In the gas phase at the G2(MP2) and CBS-QB3 levels of theory, the important, low-energy conformers are structures 100 and 95. In the aqueous phase at the SM5.42/HF/6-31G* level of theory, the lowest energy conformers are structures 95 and 46. Boltzmann distributions have been determined from these high-level calculations, and good agreement is observed when these distributions are compared to the available experimental data. These calculations indicate that the enthalpic and entropic contributions to the Gibbs free energy are important for an accurate determination of the conformational and energetic preferences of glycerol. Different levels of theory and basis sets were used in order to understand the effects of nonbonded interactions (i.e., intramolecular hydrogen bonding). The efficiency of basis set and level of theory in dealing with the issue of intramolecular hydrogen bonding and reproducing the correct energetic and geometrical trends is discussed, especially with relevance to practical computational methods for larger polyhydroxylated compounds, such as oligosaccharides.  相似文献   
14.
This study reports a new methodology to synthesize exo‐glycals bearing both a sulfone and a phosphonate. This synthetic strategy provides a way to generate exo‐glycals displaying two electron‐withdrawing groups and was applied to eight different carbohydrates from the furanose and pyranose series. The Z/E configurations of these tetrasubstituted enol ethers could be ascertained using NMR spectroscopic techniques. Deprotection of an exo‐glycal followed by an UMP (uridine monophosphate) coupling generated two new UDP (uridine diphosphate)‐galactofuranose analogues. These two Z/E isomers were evaluated as inhibitors of UGM, GlfT1, and GlfT2, the three mycobacterial galactofuranose processing enzymes. Molecule 46‐(E) is the first characterized inhibitor of GlfT1 reported to date and was also found to efficiently inhibit UGM in a reversible manner. Interestingly, GlfT2 showed a better affinity for the (Z) isomer. The three enzymes studied in the present work are not only interesting because, mechanistically, they are still the topic of intense investigations, but also because they constitute very important targets for the development of novel antimycobacterial agents.  相似文献   
15.
The interactions between 3-O-methyl-mannose polysaccharides (MMPs), extracted from Mycobacterium smegmatis (consisting of a mixture of MMP-10, -11, -12 and -13) or obtained by chemical synthesis (MMP-5(s) , -8(s) , -11(s) and -14(s) ), and linear saturated and unsaturated fatty acids (FAs), and a commercial mixture of naphthenic acids (NAs) in aqueous solution at 25?°C and pH?8.5 were quantified by electrospray ionization mass spectrometry (ESI-MS). Association constants (K(a) ) for MMP binding to four FAs (myristic acid, palmitic acid, stearic acid and trans-parinaric acid) were measured by using an indirect ESI-MS assay, the "proxy protein" method. The K(a) values are in the 10(4) -10(5) M(-1) range and, based on results obtained for the binding of the synthetic MMPs with palmitic acid, increase with the size of the carbohydrate. Notably, the measured affinity of the extracted MMPs for trans-parinaric acid is two orders of magnitude smaller than the reported value, which was determined by using a fluorescence assay. Using a newly developed competitive binding assay, referred to as the "proxy protein/proxy ligand" ESI-MS method, it was shown that MMPs bind specifically to NAs in aqueous solution, with apparent affinities of approximately (5×10(4) )?M(-1) for the mixture of NAs tested. This represents the first demonstration that MMPs can bind to hydrophobic species more complex than those containing linear alkyl/alkenyl chains. Moreover, the approach developed here represents a novel method for probing carbohydrate-lipid interactions.  相似文献   
16.
The biosynthesis of lipopolysaccharide (LPS), a key immunomodulatory molecule produced by gram-negative bacteria, has been a topic of long-term interest. To date, the chemical probes used as tools to study LPS biosynthetic pathways have consisted primarily of small fragments of the larger structure (e.g., the O-chain repeating unit). While such compounds have helped to provide significant insight into many aspects of LPS assembly, understanding other aspects will require larger, more complex probes. For example, the molecular interactions between polymeric LPS biosynthetic intermediates and the proteins that transfer them across the inner and outer membrane remain largely unknown. We describe the synthesis of two lipid-linked polysaccharides, containing 11 and 27 monosaccharide residues, that are related to LPS O-chain biosynthesis in Escherichia coli O9a. This work has led not only to multi-milligram quantities of two biosynthetic probes, but also provided insights into challenges that must be overcome in the chemical synthesis of structurally-defined polysaccharides.

The synthesis of lipid-linked polysaccharides containing 11 and 27 monosaccharides via a ‘frame-shift’ strategy is described. The work provides biosynthetic probes and highlights challenges in synthesizing structurally-defined polymeric glycans.  相似文献   
17.
The synthesis of 11 oligosaccharides (4-14) containing beta-arabinofuranosyl residues is reported. The glycans are all fragments of two polysaccharides, arabinogalactan and lipoarabinomannan, which are found in the cell wall complex of mycobacteria. In the preparation of the targets, the key step was a low-temperature glycosylation reaction that installed the beta-arabinofuranosyl residues with good to excellent stereocontrol.  相似文献   
18.
An efficient method for the synthesis of glycosyl phosphinic acids (21) from the corresponding C-phosphonates is described. The route developed involves three steps: reduction of the glycosyl C-phosphonate to a primary phosphine, reaction of this product with an alkylating agent to afford a secondary phosphine, and finally oxidation to the phosphinic acid. Deprotection provides compounds suitable for testing as glycosyl phosphate analogues. Although the focus of this report is the synthesis of analogues of arabinofuranosyl-containing phosphate esters, the method should be readily applicable to other systems, carbohydrate or otherwise.  相似文献   
19.
The potential energy surface of methyl beta-D-arabinofuranoside (3) has been studied by ab initio molecular orbital (HF/6-31G) and density functional theory (B3LYP/6-31G) calculations via minimization of the 10 possible envelope conformers. The partial potential energy surface identified that the global minimum and lowest energy northern conformer was E(2). In the HF calculations, (2)E was the most stable southern conformer, while the density functional theory methods identified (4)E as the local minimum in this hemisphere. Additional calculations at higher levels of theory showed that the B3LYP-derived energies of many of the envelope conformers of 3 are dependent upon the basis set used. It has also been demonstrated that B3LYP/6-31+G//B3LYP/6-31G single point energies are essentially the same as those obtained from full geometry optimizations at the B3LYP/6-31+G level. The northern and southern minima of the B3LYP/6-31+G surface are, respectively, the E(2) and (2)E conformers. The B3LYP/6-31G geometries were used to study the relationship between ring conformation and various structural parameters including bond angles, dihedral angles, bond lengths, and interatomic distances.  相似文献   
20.
The ever-increasing discovery of biologically important events mediated by carbohydrates has generated great interest in the synthesis of oligosaccharides and the development of new methods for glycosidic bond formation. In this paper, we report that 2,3-anhydrofuranose thioglycosides (1, 5) and glycosyl sulfoxides (2, 6), in which the hydroxyl groups C-2 and C-3 are "protected" as an epoxide, glycosylate alcohols with an exceptionally high degree of stereocontrol. The predominant or exclusive product of reactions with this fundamentally new class of glycosylating agent is that in which the newly formed glycosidic bond is cis to the epoxide moiety. We further demonstrate that subsequent nucleophilic opening of the epoxide moiety proceeds under basic conditions to give products in high yield and with good to excellent regioselectivity. The major ring-opened products possess the arabino stereochemistry, and thus this methodology constitutes a new approach for the synthesis of arabinofuranosides. In the epoxide opening reactions of glycosides with the 2,3-anhydro-beta-D-lyxo stereochemistry (e.g., 73), the addition of (-)-sparteine (78) to the reaction mixture dramatically enhanced the regioselectivity in favor of the arabino product. This represents the first example of the use of 78 to influence the regioselectivity of an epoxide ring opening reaction with a non-carbon nucleophile. We have demonstrated the utility of this methodology through the efficient synthesis of an arabinofuranosyl hexasaccharide, 7, which is a key structural motif in two mycobacterial cell wall polysaccharides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号