首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  国内免费   1篇
化学   37篇
晶体学   1篇
数学   1篇
物理学   3篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1998年   2篇
  1992年   2篇
排序方式: 共有42条查询结果,搜索用时 0 毫秒
11.
12.
Adsorption of valeric acid was studied on two activated carbons of different origins, wood and bituminous coal. The effect of oxidation on the adsorption uptake was investigated. Both initial samples were oxidized with nitric acid, which caused the introduction of a significant number of oxygen-containing groups onto the carbon surface. Boehm titration, potentiometric titration, thermal analysis, and sorption of nitrogen were used for detailed surface characterization. Valeric acid adsorption from aqueous solution was measured at 333 K. The calculated isotherms showed a good fitting to the Freundlich equation. The capacity coefficients revealed a direct correlation with the number of basic groups present on the surface. The amount of valeric acid adsorbed at its low concentration is dependent on the number of basic groups, whereas at high concentration the amount adsorbed depends on the volume of micropores smaller than 10 A, where the adsorption potential is the strongest.  相似文献   
13.
A micro/mesoporous wood-based activated carbon was modified with different loadings of vanadium pentoxide via incipient impregnation with ammonium vanadate solution followed by heating in nitrogen at 500 degrees C. The materials were used as adsorbents for ammonia. Both adsorption and desorption curves were recorded. The initial and exhausted samples were characterized by Fourier transform infrared spectroscopy (FTIR), potentiometric titration, thermal analysis and adsorption of nitrogen. An improvement in ammonia uptake compared to the virgin carbon was observed, and the adsorption capacity was found linearly dependent on the metal content. Water increases ammonia adsorption capacity via dissolution of the gas, but it also competes with ammonia because both of them are preferentially adsorbed on the same vanadium oxide sites (vanadyl oxygens). Even though an increase in the interactions strength between ammonia and the adsorbents' surface has been reached compared to previous studies, some weakly adsorbed ammonia was still released from the surface during air purging.  相似文献   
14.
A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.  相似文献   
15.
Role of surface chemistry in adsorption of phenol on activated carbons   总被引:6,自引:0,他引:6  
Two samples of activated carbon of wood origin were oxidized using ammonium persulfate. The structural properties and surface chemistry of the samples and their oxidized counterparts were characterized using sorption of nitrogen and Boehm titration, respectively. Phenol adsorption from solution (at trace concentrations) was studied at temperatures close to ambient without maintaining a specific pH of the solution. The results showed, as expected, that the phenol uptake is dependent on both the porosity and surface chemistry of the carbons. Furthermore, phenol adsorption showed a strong dependence on the number of carboxylic groups due to two factors: (1) phenol reacts with carboxylic groups on the carbon surface, forming an ester bond, and (2) carboxylic groups on the carbon surface remove the pi-electron from the activated carbon aromatic ring matrix, causing a decrease in the strength of interactions between the benzene ring of phenol and the carbon's basal planes, which decreases the uptake of phenol.  相似文献   
16.
Copper oxide particles were synthesized by precipitation in sodium hydroxide and dispersed simultaneously in mesoporous SBA-15 silica. The materials were then submitted to thermal treatment under nitrogen at different temperatures. They were tested as novel NO(2) adsorbents in dynamic condition at room temperature. The surface of the initial and exhausted materials was characterized using N(2) adsorption, XRD, TEM, thermal analysis and FT-IR. The addition of Cu(2)O particles leads to a significant increase in the NO(2) adsorption capacity. However, no trend between the NO(2) capacity and the temperature of the thermal treatment of the materials has been observed. The amount of NO released during the NO(2) adsorption was found to be lower on the materials submitted to a low temperature treatment. On these materials, the formation of copper nitrites is favored, whereas on materials treated at higher temperature, copper nitrates are formed as a predominant species. The results suggest that silanol groups of the silica matrix play an important role in NO(2) adsorption and NO retention at room temperature.  相似文献   
17.
The thermal stability of a dehydrated Cu(3)(BTC)(2) (copper(II) benzene 1,3,5-tricarboxylate) metal-organic framework was studied by molecular dynamics simulation with a ReaxFF reactive force field. The results show that Cu(3)(BTC)(2) is thermally stable up to 565 K. When the temperature increases between 600 K and 700 K, the framework starts to partially collapse. The RDF analysis shows that the long range correlations between Cu dimers disappear, indicating the loss of the main channels of Cu(3)(BTC)(2). When the temperature is above 800 K, we find the decomposition of the Cu(3)(BTC)(2) framework. CO is the major product, and we also observe the release of CO(2), O(2), 1,3,5-benzenetricarboxylate (C(6)H(3)(CO(2))(3), BTC) and glassy carbon. The Cu dimer is stable up to 1100 K, but we find the formation of new copper oxide clusters at 1100 K. These results are consistent with experimental findings, and provide valuable information for future theoretical investigations of Cu(3)(BTC)(2) and its application in adsorption, separation and catalytic processes.  相似文献   
18.
Desulfurization adsorbents for purification of digester gas were prepared by pyrolysis of sewage sludge impregnated with spent mineral oil. To evaluate the changes in the structural and chemical properties the pyrolysis time and temperature varied. The materials were characterized using adsorption of nitrogen, FTIR, XRD, ICP, SEM and thermal analysis. Their catalytic activity was tested in the removal of hydrogen sulfide from simulated mixture of digester gas. The results indicated the importance of new carbon phase from the oil precursor. It provided mesoporosity, which increased the dispersion of catalytic phase and space for storage of surface reaction products. The results indicated that the adsorbents obtained at 950 °C are much more active in the process of hydrogen sulfide oxidation than those obtained at 650 °C. Moreover, longer heat treatment is also beneficial for the development of surface catalytic properties. Extensive pyrolysis stabilizes carbon phase via increasing its degree of aromatization and provides activation agents for this phase coming from decomposition and rearrangement of inorganic phase.  相似文献   
19.
Coal origin and wood origin activated carbons were used in this study. To broaden the spectrum of surface features, the surface of the initial samples was modified using oxidation with nitric acid or impregnation with urea followed by heat treatment. Boehm and potentiometric titrations, thermal analysis, and sorption of nitrogen were used to characterize the pore structure and surface chemistry. Then adsorption of ethylmethylamine from aqueous solutions was carried out without controlling the pH of the carbon suspension. The isotherms were measured at 299 K and fitted to the Freundlich equation. The results showed that the amount of ethylmethylamine adsorbed on all carbons at a high concentration is dependent on the total number of surface groups whereas at low concentration it depends on the type of surface groups. The latter was observed exclusively for initial and oxidized carbons where acidic groups are present. The ethylmethylamine adsorption is mainly governed by dipole-dipole, hydrogen bonding, or specific acid-base interactions. Those interactions play a crucial role in incorporation of nitrogen to the carbon matrix at elevated temperatures.  相似文献   
20.
This minireview summarizes our recent findings on the photoactivity of S-doped nanoporous carbons. The materials were either synthesized from the sulfur-containing polymers or obtained by heat treatment of commercial carbon with hydrogen sulfide. Their surface was extensively charac terized from the points of view of its surface chemistry, porosity, morphology, and electronic properties. The carbons showed enhanced activity towards oxidation of arsine and removal of diben-zothiophenes from model diesel fuel. The latter were oxidized to various oxygen containing intermediates and the cleavage of C–C bonds in aromatic ring was detected when carbon with adsorbed species was exposed to UV or visible light. Irradiation resulted in generation of photocurrent in a broad range of wavelength. The presence of sulfur led to the reduction of oxygen and contributed to an increased capacitive performance. We link these effects to the presence of reduced sulfur in the small pores which enhances the dispersive interactions via inducing a positive charge to carbon atoms, to sulfur in oxygenated forms which contribute to Faradaic reactions and increase the polar interactions, and to the hydrophobicity of a surface in small pores where oxygen can be reduced by excited electrons from chromophoric-like sulfur containing groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号