首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   24篇
化学   259篇
物理学   27篇
  2023年   2篇
  2022年   10篇
  2021年   16篇
  2020年   16篇
  2019年   13篇
  2018年   2篇
  2016年   7篇
  2015年   12篇
  2014年   9篇
  2013年   6篇
  2012年   20篇
  2011年   12篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   11篇
  2006年   14篇
  2005年   14篇
  2004年   19篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1942年   1篇
  1940年   6篇
  1939年   1篇
  1938年   4篇
  1937年   3篇
  1936年   2篇
排序方式: 共有286条查询结果,搜索用时 31 毫秒
111.
Reactive ortho-benzyne derivatives are believed to be the initial products of liquid-phase [4 + 2]-cycloadditions between a 1,3-diyne and an alkyne via what is known as a hexadehydro-Diels–Alder (HDDA) reaction. The UV/VIS spectroscopic observation of o-benzyne derivatives and their photochemical dynamics in solution, however, have not been reported previously. Herein, we report direct UV/VIS spectroscopic evidence for the existence of an o-benzyne in solution, and establish the dynamics of its formation in a photoinduced reaction. For this purpose, we investigated a bis-diyne compound using femtosecond transient absorption spectroscopy in the ultraviolet/visible region. In the first step, we observe excited-state isomerization on a sub-10 ps time scale. For identification of the o-benzyne species formed within 50–70 ps, and the corresponding photochemical hexadehydro-Diels–Alder (-HDDA) reactions, we employed two intermolecular trapping strategies. In the first case, the o-benzyne was trapped by a second bis-diyne, i.e., self-trapping. The self-trapping products were then identified in the transient absorption experiments by comparing their spectral features to those of the isolated products. In the second case, we used perylene for trapping and reconstructed the spectrum of the trapping product by removing the contribution of irrelevant species from the experimentally observed spectra. Taken together, the UV/VIS spectroscopic data provide a consistent picture for o-benzyne derivatives in solution as the products of photo-initiated HDDA reactions, and we deduce the time scales for their formation.

We report the transient ultraviolet/visible absorption spectrum of an o-benzyne species in solution for the first time.  相似文献   
112.
113.
The complex trans-[Rh(Cl)(CO)(PPh3)2] (1) is an efficient catalyst precursor for the dehydrogenative borylation of alkenes without consumption of half the alkene substrate by hydrogenation, giving useful vinylboronate esters including 1,1-disubstituted derviatives that cannot be made by alkyne hydroboration.  相似文献   
114.
We show that the electronic coupling in strongly coupled organic mixed-valence systems can be effectively probed by means of gas-phase ultraviolet photoelectron spectroscopy (UPS). Taking six diamines as examples, the UPS estimates for the electronic couplings H(ab) are compared with the corresponding values determined from the intervalence charge-transfer absorption bands and from electronic structure calculations. Similar trends are observed for the H(ab) values estimated from UPS and optical spectra; this provides support for the applicability of Hush theory to strongly coupled organic mixed-valence systems. The UPS electronic couplings are found to be somewhat smaller than those from optical spectroscopy, which is attributed to the role of vibronic coupling to symmetrical modes; when corrected for this vibronic coupling, the UPS H(ab) estimates confirm that triarylamine-based mixed-valence systems are close to the class-II/class-III borderline.  相似文献   
115.
116.
Many transition‐metal complexes and some metal‐free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C?O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal‐free perborylated C1 and C2 products, such as C(Bpin)4 and C2(Bpin)6, respectively, which have great potential as building blocks for Suzuki–Miyaura cross‐coupling and other reactions. The use of 13CO‐enriched ruthenium carbonyl has demonstrated that the boron‐bound carbon atoms of all of these reaction products arise from CO ligands.  相似文献   
117.
The crystal structure of a cyanine dye rotaxane shows that the cyclodextrin is tightly threaded round the polymethine bridge of the dye; encapsulation dramatically increases the kinetic chemical stability of the radicals formed on oxidation and reduction of the dye, making it possible to observe the rotaxane radical dication by ESR and UV-vis-NIR spectroscopy.  相似文献   
118.
We present a comprehensive experimental and theoretical characterization of the electronic structure of four 1,1-diaryl-2,3,4,5-tetraphenylsiloles (aryl = phenyl, 2-(9,9-dimethylfluorenyl), 2-thienyl, pentafluorophenyl). Solid-state electron affinities and ionization potentials of these siloles were measured using inverse-photoelectron spectroscopy (IPES) and photoelectron spectroscopy (PES), respectively; the density of electronic states obtained from calculations performed at the density functional theory (DFT) level corresponds very well to the PES and IPES data. The direct IPES measurements of electron affinity were then used to assess alternative estimates based on electrochemical and/or optical data. We also used DFT to calculate the reorganization energies for the electron-transfer reactions between these siloles and their radical anions. Additionally, optical data and ionization potential and electron affinity data were utilized to estimate the binding energies of excitons in these siloles.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号