首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学   34篇
力学   1篇
数学   3篇
物理学   11篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有49条查询结果,搜索用时 281 毫秒
41.
The idea of nondissipative, persistent currents in mesoscopic metallic or semiconducting rings and cyclinders appears counterintuitive, because it contradicts our experience with currents in macroscopic metals. On the other hand such orbital currents are well known properties of atoms. A comparative study of nondissipative ring currents in different finite quantum systems is therefore of interest. In this paper the properties of atoms, mesoscopic metallic or semiconducting rings and cylinders and elongated molecules called carbon nanotubes are discussed and compared.  相似文献   
42.
Electron–positron annihilation into hadrons plus an energetic photon from initial state radiation allows the hadronic cross-section to be measured over a wide range of energies. The full next-to-leading order QED corrections for the cross-section for annihilation into a real tagged photon and a virtual photon converting into hadrons are calculated where the tagged photon is radiated off the initial electron or positron. This includes virtual and soft photon corrections to the process and the emission of two real hard photons: . A Monte Carlo generator has been constructed, which incorporates these corrections and simulates the production of two charged pions or muons plus one or two photons. Predictions are presented for centre-of-mass energies between 1 and 10 GeV, corresponding to the energies of DANE, CLEO-C and B-meson factories. Received: 14 December 2001 / Published online: 5 April 2002  相似文献   
43.
Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 °C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites.  相似文献   
44.
Preparation and characterization of two new reference materials of biological origin, namely: Tea Leaves (INCT-TL-1) and Mixed Polish Herbs (INCT-MPH-2) is described. The raw materials were ground in an agate ball mill, sieved through a nylon sieve, collecting fraction of particle size: Æ£67 ·m, and carefully homogenized. Preliminary homogeneity testing by XRF method and final checking of homogeneity by NAA after distribution of the materials into containers revealed that they are sufficiently homogeneous at least for sample size ≥100 mg. Both materials were prepared in amounts exceeding 40 kg and certified on the basis of a worldwide interlaboratory comparison, in which 109 laboratories from 19 countries participated. The method of data evaluation leading to assignment of certified values was essentially the same as that used previously in this Laboratory, but supplemented by additional data from the analysis of a CRM which was sent to the participants and analyzed by them along with the candidate reference materials. In addition the results for a few elements by very accurate developed methods in this Laboratory were obtained and used to support the certification process. Analytical uncertainties and stability uncertainties were quantified to arrive at combined uncertainties of the certified values. So far 18 elements in INCT-TL-1 and 21 in INCT-MPH-2 could be certified.  相似文献   
45.
A chemometric approach, based on the study of the autocovariance function, is described to study isothermal GC chromatograms of multicomponent mixtures: isothermal GC analysis is the method of choice in space missions since it is, to date, the only method compatible with flight constraints. Isothermal GC chromatograms look inhomogeneous and disordered with peak density decreasing at higher retention times: a time axis transformation is proposed to make retention an homogeneous process so that CH2 addition in terms of an homologous series yields a constant retention increment. The time axis is transformed into a new scale based on the retention times of n-alkanes, as they are the basis of the universal Kovats indices procedure. The order introduced into the chromatogram by retention time linearization can be simply singled out by the experimental autocorrelation function (EACF) plot: if constant inter-distances are repeated in different regions of the chromatogram, well-shaped peaks are evident in the EACF plot. By comparison, with a standard mixture it is possible to identify peaks diagnostic of specific molecular structures: study of the EACF plot provides information on sample chemical composition. The procedure was applied to standard mixtures containing compounds representative of the planetary atmospheres that will be investigated in the near future: in particular, those related to Titan's atmosphere (Cassini-Huygens mission) and cometary's nucleus (Rosetta mission). The employed experimental conditions simulated those applied to GC instruments installed on space probes and landers in space missions. The method was applied to two specific investigations related to space research, i.e., a comparison of retention selectivity of different GC columns and identification of the chemical composition of an unknown mixture.  相似文献   
46.
The cometary sampling and composition (COSAC) experiment is one of the principal experiments of the surface lander probe of the European Space Agency Rosetta mission to be launched in January 2003. The instrument is designed for the in situ chemical analysis of a cometary nucleus as the details of the nucleus composition are of primary importance for understanding both the formation of the solar system, and the origin of life on Earth. The COSAC experiment consists of an evaporation/pyrolysis device and two analytical systems: a multi-column gas chromatograph and a high-resolution time-of-flight mass spectrometer which may either be operated alone or in a coupled mode. The gas chromatograph includes five general purpose chromatographic columns and three chiral ones, all mounted in parallel. Taking into account the chemical species potentially present in the cometary nucleus as well as the space constraints, a set of five complementary columns was selected to perform the separation and identification of the compounds present in the cometary nucleus. This set of columns includes a carbon molecular sieve porous-layer open tubular (PLOT) column used for the separation of both the noble and other permanent gases, and the C1-C2 hydrocarbons. A second PLOT column uses a divinylbenzene-ethylene glycol-dimethylacrylate porous polymer as stationary phase for the analysis of a wide range of C1-C2 organic molecules, Two complementary wall-coated open tubular (WCOT) columns with polydimethylsiloxane (PDMS) liquid stationary phases, one containing cyanopropyl-phenylsiloxane and the other diphenylsiloxane groups, are designed to target the same range of organic compounds (C3-C7) which could be representative of the widest range of cometary compounds. A third WCOT column with an apolar stationary phase made of non-substituted PDMS is used for the separation and identification of higher-molecular-mass compounds (up to C10) and aromatic species (monoaromatic and polyaromatic). This paper describes these five general-purpose capillary PLOT and WCOT columns, selected to be used in the COSAC GC system. The analytical capabilities are examined with a special emphasis on the exobiological and planetological implications.  相似文献   
47.
It is shown in this paper that the lower limit of detection and specificity of oxygen determination in strongly activated non-ferrous metals can be improved by means of the optimization of Pb-absorber thickness, cooling time and cyclic activation analysis. Some mathematical predictions are verified by oxygen determination in copper and yttrium.  相似文献   
48.
Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ∼10-4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment.  相似文献   
49.
Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号