首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   1篇
化学   69篇
力学   2篇
数学   2篇
物理学   9篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
81.
A useful methodology is introduced for the analysis of data obtained via gas chromatography with mass spectrometry (GC-MS) utilizing a complete mass spectrum at each retention time interval in which a mass spectrum was collected. Principal component analysis (PCA) with preprocessing by both piecewise retention time alignment and analysis of variance (ANOVA) feature selection is applied to all mass channels collected. The methodology involves concatenating all concurrently measured individual m/z chromatograms from m/z 20 to 120 for each GC-MS separation into a row vector. All of the sample row vectors are incorporated into a matrix where each row is a sample vector. This matrix is piecewise aligned and reduced by ANOVA feature selection. Application of the preprocessing steps (retention time alignment and feature selection) to all mass channels collected during the chromatographic separation allows considerably more selective chemical information to be incorporated in the PCA classification, and is the primary novelty of the report. This methodology is objective and requires no knowledge of the specific analytes of interest, as in selective ion monitoring (SIM), and does not restrict the mass spectral data used, as in both SIM and total ion current (TIC) methods. Significantly, the methodology allows for the classification of data with low resolution in the chromatographic dimension because of the added selectivity from the complete mass spectral dimension. This allows for the successful classification of data over significantly decreased chromatographic separation times, since high-speed separations can be employed. The methodology is demonstrated through the analysis of a set of four differing gasoline samples that serve as model complex samples. For comparison, the gasoline samples are analyzed by GC-MS over both 10-min and 10-s separation times. The successfully classified 10-min GC-MS TIC data served as the benchmark analysis to compare to the 10-s data. When only alignment and feature selection was applied to the 10-s gasoline separations using GC-MS TIC data, PCA failed. PCA was successful for 10-s gasoline separations when the methodology was applied with all the m/z information. With ANOVA feature selection, chromatographic regions with Fisher ratios greater than 1500 were retained in a new matrix and subjected to PCA yielding successful classification for the 10-s separations.  相似文献   
82.
Young TE  Synovec RE 《Talanta》1996,43(6):889-899
Chemical analysis of surface active species (surfactants) is of interest for many applications, such as in process monitoring, biomedical applications, environmental monitoring and surface science investigations. Recently, we reported a dynamic surface tension detector (DSTD) based upon optically probing the size of a repeating drop resulting from constant flow of an aqueous solvent out of the end of a capillary. Presence of a surfactant in a growing drop reduces the surface tension at the air-solvent interface, causing the drop to detach at a smaller volume, which is detected. The DSTD has a kinetic dependence, and with increasing flow rate the sensitivity decreases due to diffusional and adsorption effects. We report that for the sodium salt of dodecylsulfate (DS), the DSTD performs significantly better with a stainless steel (S.S.) capillary dropper than with a fused silica dropper because the S.S. dropper exhibits a smaller adsorption effect as a function of time. Flow-injection analysis with the DSTD of DS was found to enhance sensitivity 50-fold by in-situ reaction with the ion-pair reagent tetrabutylammonium hydroxide (TBA) in water, even though the TBA alone was not very surface active. The TBA-DS system serves as a model for a selective detection method in which surface activity is exploited and enhanced. The detection limit for DS, as TBA-DS, was 400 ppb. Additionally, weakly surface active species such as TBA could be analyzed "indirectly" by ion-pair formation with DS. The enhanced sensitivity is due to increased packing of the ion-pairs at the air-aqueous solvent interface. The flow rate dependence on the sensitivity of detecting the TBA-DS ion-pair was examined. Two limiting conditions were observed as a function of ion-pair concentration: sensitivity decreases linearly with inverse flow rate at high flow rates and approaches a steady state at slower flow rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号