首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   1篇
化学   69篇
力学   2篇
数学   2篇
物理学   9篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
31.
Bramanti E  Ferrari C  Angeli V  Onor M  Synovec RE 《Talanta》2011,85(5):2553-2561
A dynamic surface tension detector (DSTD) has been equipped with an additional pressure sensor for simultaneous viscosity measurements, as a detector for flow injection analysis. The viscosity measurement is based on a single capillary viscometer (SCV) placed in parallel configuration with the DSTD. The viscometer in the optimized conditions consists of a PEEK capillary (i.d. = 0.25 mm, L = 75 cm) kept at constant temperature using a thermostatic bath, which leads on the two sides to the two arms of a differential piezoelectric pressure transducer with a range of 0-35 psi. The DSTD, described previously, measures the changing pressure across the liquid/air interface of 2 μL drops repeatedly forming at the end of a capillary.SCV performance has been evaluated by measuring dynamic viscosity of water/glycerol mixtures analysed in flow injection and comparing the results with the values reported in the literature. The detection limits of SCV and DSTD, calculated as 3σ of the blank, were 0.012 cP and 0.6 dyn cm−1, respectively.The FI-SCV-DSTD system has been applied to the study of temperature-induced denaturation/aggregation process in bovine serum albumin (BSA).The results have been supported and discussed with respect to BSA conformational analysis performed using Fourier Transform infrared spectroscopy.  相似文献   
32.
研究了用酸分解试样后不需分离基体直接用电感耦合等离子体原子发射光谱(ICP-AES)法测定铅锭中银、铜、铋、砷、锑、锡、锌、铁、镉、镍、铊11种杂质元素的方法。优化了样品前处理条件及仪器检测条件。方法的检出限为0.0012~0.0168μg/mL,回收率为89%~110%,RSD为2.3%~5.0%。方法简便快速,检出限低,精密度和准确度能满足铅锭中杂质元素的检测要求,具有较强的实用性和可操作性,可用于铅锭中杂质元素的测定。  相似文献   
33.
The chemometric method referred to as the generalized rank annihilation method (GRAM) is used to improve the precision, accuracy, and resolution of comprehensive two‐dimensional gas chromatography (GC×GC) data. Because GC×GC signals follow a bilinear structure, GC×GC signals can be readily extracted from noise by chemometric techniques such as GRAM. This resulting improvement in signal‐to‐noise ratio (S/N) and detectability is referred to as bilinear signal enhancement. Here, GRAM uses bilinear signal enhancement on both resolved and unresolved GC×GC peaks that initially have a low S/N in the original GC×GC data. In this work, the chemometric method of GRAM is compared to two traditional peak integration methods for quantifying GC×GC analyte signals. One integration method uses a threshold to determine the signal of a peak of interest. With this integration method only those data points above the limit of detection and within a selected area are integrated to produce the total analyte signal for calibration and quantification. The other integration method evaluated did not employ a threshold, and simply summed all the data points in a selected region to obtain a total analyte signal. Substantial improvements in quantification precision, accuracy, and limit of detection are obtained by using GRAM, as compared to when either peak integration method is applied. In addition, the GRAM results are found to be more accurate than results obtained by peak integration, because GRAM more effectively corrects for the slight baseline offset remaining after the background subtraction of data. In the case of a 2.7‐ppm propylbenzene synthetic sample the quantification result with GRAM is 2.6 times more precise and 4.2 times more accurate than the integration method without a threshold, and 18 times more accurate than the integration method with a threshold. The limit of detection for propylbenzene was 0.6 ppm (parts per million by mass) using GRAM, without implementing any sample preconcentration prior to injection. GRAM is also demonstrated as a means to resolve overlapped signals, while enhancing the S/N. Four alkyl benzene signals of low S/N which were not resolved by GC×GC are mathematically resolved and quantified.  相似文献   
34.
The current status for the development of novel open-tubular gas chromatography (GC) stationary phases consisting of thin films of gold-centered monolayer protected nanoparticles (MPNs) is reported. Dodecanethiol MPNs, in which the monolayer is dodecanethiol linked to the gold nanoparticle, have shown great promise as a GC stationary phase with efficient columns having been produced in a variety of capillary i.d.'s with stationary phase film depths ranging from 10 to 60 nm, +/-2 nm at a given film depth. Stationary phase operational parameters are discussed including maximum operating temperature, sample capacity, and stationary phase lifetime and robustness. An overview of the general method employed for column production is also included. The sample capacity was determined for a 2.5 m, 250 microm i.d. column with a stationary phase film thickness of 40 nm, at 50 degrees C using anisole (k' = 1.86) as the probe analyte. The sample capacity was experimentally found to be 2.3 ng under these conditions, similar to values reported for thicker, polymer stationary phases. The efficiency of the dodecanethiol MPN stationary phase was determined with a 100 microm i.d. capillary and found to have a reduced plate height hmin value of 0.95 for octane (k' = 0.68). Areas of application illustrated and discussed utilizing the dodecanethiol MPN stationary phase include complementary separations such as two-dimensional GC (GC x GC), potential utilization within a model system for a micro-fabricated GC (microGC), as well as efficient single dimension high-speed separations. Initial development of polar stationary phases utilizing 4-chlorobenzenethiol MPNs and 4-(trifluoromethyl)benzenethiol MPNs is discussed. Included is a selectivity comparison of the retention behavior of the 4-chlorobenzenethiol MPN stationary phase and the dodecanethiol MPN stationary phase.  相似文献   
35.
Miller KE  Synovec RE 《Talanta》2000,51(5):921-933
The use of drops in chemical analysis methodology and instrumentation has a deeply rooted past in the area of electrochemistry through the evolution of the dropping mercury electrode (DME). This history has also been deeply rooted in the field of surface science due to the inextricable connection between surface tension forces and drop formation. While the use of the DME is well established, the evolution of drop-based analytical measurements using aqueous and/or organic drops is a rapidly emerging and diverse field, encompassing several interdisciplinary areas of science: surface science and interfacial surface tension phenomena, spectroscopic detection, analytical instrumentation hyphenation, liquid membrane separation, reagent chemistry, electrochemistry, and so on. This review of 112 references covers various aspects of drop-based analytical measurements involving aqueous and/or organic drops. The review is divided into four sections, although the classification of a particular reference into a given section can sometimes be argued. The first section considers the use of drops as a detector component. The second section deals with fundamental studies that probe drop-related chemical and physical phenomena that are relevant to current and future developments in analytical chemistry. The next section covers recent advances in the area of microfluidic sample handling and instrumentation hyphenation. The final section reports upon emerging technologies aimed toward drop-based chemical analyzers that incorporate a number of steps in a chemical analysis: microextraction, preconcentration, reagent chemistry, microfluidic handling, and detection.  相似文献   
36.
The H-Sensor reported herein is a micro-fluidic device compatible with flow injection analysis (FIA) and high performance liquid chromatography (HPLC). The device detects analytes at two separate off-chip absorbance flow cells, providing two simultaneous absorbance measurements. The ratio of these two absorbance signals contains analyte diffusion coefficient information. A theoretical model for the sensing mechanism is presented. The model relates the signal Ratio to analyte diffusion coefficient. The model is qualitatively evaluated by comparing theoretical and experimental signal Ratio values. Experimental signal Ratios were collected via FIA for a variety of analytes, including sodium azide, benzoic acid, amino acids, peptides, and proteins. Measuring absorbance at multiple wavelengths provides higher order data allowing the analyte signals from mixtures to be deconvolved via classical least squares (CLS). As a result of the H-Sensor providing two simultaneous signals as a function of time for each sample injection, two simulated second-order HPLC chromatograms were generated using experimental H-Sensor data. The chemometric deconvolution method referred to as the generalized rank annihilation method (GRAM) was used to demonstrate chromatographic and spectroscopic deconvolution. GRAM also provides the signal Ratio value, therefore simultaneously obtaining the analyte diffusion coefficient information during deconvolution. The two chromatograms successfully serve as the standard and unknown for the GRAM deconvolution. GRAM was evaluated on chromatograms at various chromatographic resolutions. GRAM was found to function to a chromatographic resolution at and above 0.25 with a percent quantitative error of less then 10%.  相似文献   
37.
Typical refractive index (RI) detectors for liquid chromatography (LC) are not well suited to application with mobile phase gradient elution, due to the difficulty in correcting for the detected baseline shift during the gradient. We report a sensitive, highly reproducible, microfabricated refractive index gradient (micro-RIG) detector that performs well with mobile phase gradient elution LC. Since the micro-RIG signal remains on-scale throughout the mobile phase gradient, one can apply a baseline correction procedure. We demonstrate that by collecting two mobile phase gradient blanks and subtracting one of them from the other, a reproducible, flat baseline is achieved. Therefore, subtracting a blank from a separation provides a baseline corrected chromatogram with reasonably high signal-to-noise ratio for eluting analytes. The micro-RIG detector uses a collimated diode laser beam to optically probe a RIG formed perpendicular to the laminar flow direction within a microfabricated borosilicate glass chip. The chip-based design of the detector is suitable for either traditional bench-top or LC-on-a-chip technologies. We report reversed phase high performance liquid chromatography (RP-HPLC) separations of proteins and polymers, over mobile phase gradient conditions of 67% A:33% B to 3% A:97% B by volume, where A is 96% methanol:3.9% water:0.1% trifluoroacetic acid (TFA), and B is 3.9% methanol:96% water:0.1% TFA. The separations were performed on a Jupiter 5 mu C4 300 A 150 mm x 1.0 mm Phenomenex column at a flow rate of 20 microl/min. Viscosity changes during the mobile phase gradient separation are found to shift the on-chip merge position of the detected concentration gradient (i.e., RIG), in a reproducible fashion. However, this viscosity effect makes detection sensitivity vary throughout the mobile phase gradient, due to moving the optimized position of the probe beam in relation to the analyte concentration gradient being probed. None-the-less, consistent limits of detection (LODs) were achieved. The 3-sigma deflection angle LOD was 16 microrad for micro-RIG detection, corresponding to an injected concentration LOD of 7 ppm (mass/mass) for cytochrome c.  相似文献   
38.
A high-speed gas chromatography system, the gas chromatographic sensor (GCS), is developed and evaluated. The GCS combines fast separations and chemometric analysis to produce an instrument capable of high-speed, high-throughput screening and quantitative analysis of complex chemical mixtures on a similar time scale as typical chemical sensors. The GCS was evaluated with 28 test mixtures consisting of 15 compounds from four chemical classes: alkanes, ketones, alkyl benzenes, and alcohols. The chromatograms are on the order of one second in duration, which is considerably faster than the traditional use of gas chromatography. While complete chromatographic separation of each analyte peak is not aimed for, chemical information is readily extracted through chemometric data analysis and quantification of the samples is achieved in considerably less time than conventional gas chromatography.

Calibration models to predict percent volume content of either alkanes or ketones were constructed using partial least squares (PLS) regression on calibration sets consisting of the five replicate GCS runs of six different samples. The percent volume content of the alkane and ketone chemical classes were predicted on five replicate runs of the 22 remaining samples ranging from 0 to 50 or 60% depending on the class. Root mean square errors of prediction were 2–3% relative to the mean percent volume values for either alkane or ketone prediction models, depending on the samples chosen for the calibration set of that model. The alkyl benzenes and alcohols present in the calibration sets or samples were treated as variable background interference. It is anticipated that the GCS will eventually be used to rapidly sample and directly analyze industrial processes or for the high throughput analysis of batches of samples.  相似文献   

39.
赖热  刘世林  马兴孝 《物理学报》1993,42(8):1216-1222
解决介质中共振辐射的关键问题是求解Holstein方程。本文直接利用算符运算将方程积分,给出了激发态粒子集居数的含无限项的级数表达式。基于对这个级数高阶系数的极限行为的研究,成功地克服了无穷项求和的困难,整理出一个在任意给定精度下都只含有限项的解式,由它可以计算出任何时刻的结果。 关键词:  相似文献   
40.
An improved method for real-time selection of the target for the alignment of gas chromatographic data is described. Further outlined is a simple method to determine the accuracy of the alignment procedure. The target selection method proposed uses a moving window of aligned chromatograms to generate a target, herein referred to as the window target method (WTM). The WTM was initially tested using a series of 100 simulated chromatograms, and additionally evaluated using a series of 55 diesel fuel gas chromatograms obtained with four fuel samples. The WTM was evaluated via a comparison to a related method (the nearest neighbor method (NNM)). The results using the WTM with simulated chromatograms showed a significant improvement in the correlation coefficient and the accuracy of alignment when compared to the alignments performed using the NNM. A significant improvement in real-time alignment accuracy, as assessed by a correlation coefficient metric, was achieved with the WTM (starting at ∼1.0 and declining to only ∼0.985 for the 100th sample), relative to the NNM (starting at ∼1.0 and declining to ∼0.4 for the 100th sample) for the simulated chromatogram study. The results determined when using the WTM with the diesel fuels also showed an improvement in correlation coefficient and accuracy of the within-class alignments as compared to the results obtained from the NNM. In practice, the WTM could be applied to the real-time analysis of process and feedstock industrial streams to enable real-time decision making from the more precisely aligned chromatographic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号