首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   1篇
化学   69篇
力学   2篇
数学   2篇
物理学   9篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
21.
5-Geranoxypsoralen, commonly called bergamottin, a major furocoumarin contained in bergamot oil, is reported in vitro as a highly photoreactive psoralen. In ethanol, it exhibits quite a high triplet state quantum yield (approximately 0.37). The triplet state is involved in subsequent photochemistry which depends on the initial concentration and on the presence of oxygen. In contrast to most psoralens, absorption and fluorescence data suggest that 5-geranoxypsoralen does not interact with DNA in the dark. No UVA-induced interstrand cross-links in DNA were shown.  相似文献   
22.
Dual-detector differential non-destructive Fourier transform detection in a quadrupole ion trap is shown to improve signal intensity and reduce noise compared with spectra recorded using a single detector. A larger area detector in each end-cap electrode is machined to fit its hyperbolic shape and so minimize field imperfections on the z-axis. Argon, acetophenone and bromobenzene spectra were recorded to allow a comparison between single- and dual-detector (differential) modes of detection and to demonstrate the improvement achieved with differential detection. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
23.
A novel Raman sensor using a liquid-core optical waveguide is reported, implementing a Teflon-AF 2400 tube filled with water. An aqueous analyte mixture of benzene, toluene and p-xylene was introduced using a 1000 μl sample loop to the liquid-core waveguide (LCW) sensor and the analytes were preconcentrated on the inside surface of the waveguide tubing. The analytes were then eluted from the waveguide using an acetonitrile-water solvent mixture injected via a 30 μl eluting solvent loop. The preconcentration factor was experimentally determined to be 14-fold, in reasonable agreement with the theoretical preconcentration factor of 33 based upon the sample volume to elution volume ratio. Raman spectra of benzene, toluene and p-xylene were obtained during elution. It was found that analytically useful Raman signals for benzene, toluene and p-xylene were obtained at 992, 1004 and 1206 cm−1, respectively. The relative standard deviation of the method was 3% for three replicate measurements. The limit of detection (LOD) was determined to be 730 ppb (parts per billion by volume) for benzene, exceptional for a system that does not resort to surface enhancement or resonance Raman approaches. The Raman spectra of these test analytes were evaluated for qualitative and quantitative analysis utility.  相似文献   
24.
Dunphy DR  Synovec RE 《Talanta》1993,40(6):775-780
High-speed chromatography is coupled with numerical methods for analyzing unresolved chromatograms and applied to a process analysis of high-fructose corn syrup. A column selection process is demonstrated where a minimum amount of resolution is sacrificed in order to decrease analysis time from over 5 min to 25 sec. Two data analysis methods, linear least squares regression and the sequential chromatogram ratio technique coupled with sequential suppression, are compared for their ability to quantitate the poorly resolved chromatograms. Both methods fit pure component analyte chromatograms, collected on a computer, to a sample chromatogram with unknown concentrations of each analyte. For a high-fructose corn syrup sample with a nominal fructose concentration of 55%, linear least squares analysis gave a fructose concentration percentage of 57.2 +/- 0.9%. The sequential chromatogram ratio algorithm gave a fructose concentration percentage of 57.9 +/- 0.7%.  相似文献   
25.
The selectivity of high performance liquid chromatography (HPLC) separations is increased using a parallel column configuration. In this system, an injected sample is first split between two HPLC columns that provide complementary separations. The effluent from the two columns is recombined prior to detection with a single multiwavelength absorbance detector. Complementary stationary phases are used so that each chemical component produces a detected concentration profile consisting of two peaks. A parallel column configuration, when coupled with multivariate detection, provides increased chemical selectivity relative to a single column configuration with the same multivariate detection. This enhanced selectivity is achieved by doubling the number of peaks in the chromatographic dimension while keeping the run time constant. Unlike traditional single column separation methodology, the parallel column system sacrifices chromatographic resolution while actually increasing the chemical selectivity, thus allowing chemometric data analysis methods to mathematically resolve the multivariate chromatographic data. The parallel column system can be used to reduce analysis times for partially resolved peaks and simplify initial method development as well as provide a more robust methodology if and when subsequent changes in the sample matrix occur (such as when new interferences show up in subsequent samples). Here, a mixture of common aromatic compounds were separated with this system and analyzed using the generalized rank annihilation method (GRAM). Analytes that were significantly overlapped on both stationary phases applied, ZirChrom PBD and CARB phases, when used in traditional single column format, were successfully quantified with a R.S.D.% of typically 2% when the same stationary phases were used in the parallel column format. These results indicate that a parallel column system should substantially improve the chemical selectivity and quantitative precision of the analysis relative to a single-column instrument.  相似文献   
26.
Multidimensional residual distribution schemes for the convection–diffusion equation are described. Compact upwind cell vertex schemes are used for the discretization of the convective term. For the diffusive term, two approaches are compared: the classical finite element Galerkin formulation, which preserves the compactness of the stencil used for the convective part, and various residual-based approaches in which the diffusive term, evaluated after a reconstruction step, is upwinded along with the convective term.  相似文献   
27.
A rapid and low-cost means of developing a working prototype for a positive-displacement driven open tubular liquid chromatography (OTLC) analyzer is demonstrated. A novel flow programming and injection strategy was developed and implemented using soft lithography, and evaluated in terms of chromatographic band broadening and efficiency. A separation of two food dyes served as the model sample system. Sample and mobile phase flowed continuously by positive displacement through the OTLC analyzer. Rectangular channels, of dimensions 10 μm deep by 100 μm wide, were micro-fabricated in poly-dimethylsiloxane (PDMS), with the separation portion 6.6 cm long. Using a novel flow programming method, in contrast to electroosmotic flow, sample injection volumes from 0.5 to 10 nl were made in real-time. Band broadening increased substantially for injection volumes over 1 nl. Although underivatized PDMS proved to be a sub-optimal stationary phase, plate heights, H, of 12 μm were experimentally achieved for an unretained analyte with the rectangular channel resulting in a reduced plate height, h, of 1.2. Chromatographic efficiency of the unretained analyte followed the model of an OTLC system limited by mass-transfer in the mobile phase. Flow rates from 6 nl min−1 up to 200 nl min−1 were tested, and van Deemter plots confirmed plate heights were optimum at 6 nl min−1 over the tested flow rate range. Thus, the best separation efficiency, N of 5500 for the 6.6 cm length separation channel, was achieved at the minimum flow rate through the column of 6 nl min−1, or 3 ml year−1. This analyzer is a low-cost sampling and chemical analysis tool that is intended to complement micro-fabricated electrophoretic and related separation devices.  相似文献   
28.
A novel triflate (trifluoromethylsulfonate) ionic liquid (IL) thin film (0.08 microm) stationary phase was implemented for use within the second column of a comprehensive GC x GC configuration. The first column in the configuration had a 5% phenyl/95% dimethyl polysiloxane (DMPS) stationary phase with a 0.4 microm film. The DMPS x IL column configuration was used to separate a mixture of 32 compounds of various chemical functional classes. The GC x GC results for the IL column were compared with a commercially available polar column (with a 0.1 microm PEG stationary phase film) used as the second column instead. Additional studies focused on the rapid and selective separation of four phosphorous-oxygen (P-O) containing compounds from the 32-compound matrix: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), diisopropyl methylphosphonate (DIMP), and triethyl phosphate (TEP). van't Hoff plots (plots of ln k vs. 1/T) demonstrated the difference in retention between the P-O containing compounds (with DMMP reported in detail) and other classes of compounds (i. e., 2-pentanol and n-dodecane as representative) using either the IL column or the commercial PEG column. The selectivity (alpha) of the triflate IL column and the commercially available PEG column were also compared. The IL column provided significantly larger selectivities between DMMP and the other two compounds (2-pentanol and n-dodecane) than the commercial PEG column. The alpha for DMMP relative to n-dodecane was 3.0-fold greater for the triflate IL column, and the alpha for DMMP relative to 2-pentanol was 1.7-fold greater for the triflate IL column than for the PEG column.  相似文献   
29.
A computational approach to partially address the general elution problem (GEP), and better visualize, isothermal gas chromatograms is reported. The theoretical computational approach is developed and applied experimentally. We report a high speed temporally increasing boxcar summation (TIBS) transform that, when applied to the raw isothermal GC data, converts the chromatographic data from the initial time domain (in which the peak widths in isothermal GC increase as a function of their retention factors, k), to a data point based domain in which all peaks have the same peak width in terms of number of points in the final data vector, which aides in preprocessing and data analysis, while minimizing data storage size. By applying the TIBS transform, the resulting GC chromatogram (initially collected isothermally), appears with an x-axis point scale as if it were instrumentally collected using a suitable temperature program. A high speed GC isothermal separation with a test mixture containing 10 compounds had a run time of ~25 s. The peak at a retention factor k ~0.7 had a peak width of ~55 ms, while the last eluting peak at k ~89 (i.e., retention time of ~22 s) had a peak width of ~2000 ms. Application of the TIBS transform increased the peak height of the last eluting peak 45-fold, and S/N ~20-fold. All peaks in the transformed test mixture chromatogram had the width of an unretained peak, in terms of number of data points. A simulated chromatogram at unit resolution, studied using the TIBS transform, provided additional insight into the benefits of the algorithm.  相似文献   
30.
An in-depth study is presented to better understand how data reduction via averaging impacts retention alignment and the subsequent chemometric analysis of data obtained using gas chromatography (GC). We specifically study the use of signal averaging to reduce GC data, retention time alignment to correct run-to-run retention shifting, and principal component analysis (PCA) to classify chromatographic separations of diesel samples by sample class. Diesel samples were selected because they provide sufficient complexity to study the impact of data reduction on the data analysis strategies. The data reduction process reduces the data sampling ratio, S(R), which is defined as the number of data points across a given chromatographic peak width (i.e., the four standard deviation peak width). Ultimately, sufficient data reduction causes the chromatographic resolution to decrease, however with minimal loss of chemical information via the PCA. Using PCA, the degree of class separation (DCS) is used as a quantitative metric. Three "Paths" of analysis (denoted A-C) are compared to each other in the context of a "benchmark" method to study the impact of the data sampling ratio on preserving chemical information, which is defined by the DCS quantitative metric. The benchmark method is simply aligning data and applying PCA, without data reduction. Path A applies data alignment to collected data, then data reduction, and finally PCA. Path B applies data reduction to collected data, and then data alignment, and finally PCA. The optimized path, namely Path C, is created from Paths A and B, whereby collected data are initially reduced to fewer data points (smaller S(R)), then aligned, and then further reduced to even fewer points and finally analyzed with PCA to provide the DCS metric. Overall, following Path C, one can successfully and efficiently classify chromatographic data by reducing to a S(R) of ~15 before alignment, and then reducing down to S(R) of ~2 before performing PCA. Indeed, following Path C, results from an average of 15 different column length-with-temperature ramp rate combinations spanning a broad range of separation conditions resulted in only a ~15% loss in classification capability (via PCA) when the loss in chromatographic resolution was ~36%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号