首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8085篇
  免费   149篇
  国内免费   2篇
化学   4606篇
晶体学   167篇
力学   166篇
数学   1229篇
物理学   2068篇
  2022年   188篇
  2021年   177篇
  2020年   114篇
  2019年   144篇
  2018年   149篇
  2017年   155篇
  2016年   268篇
  2015年   208篇
  2014年   284篇
  2013年   659篇
  2012年   397篇
  2011年   441篇
  2010年   345篇
  2009年   320篇
  2008年   358篇
  2007年   348篇
  2006年   309篇
  2005年   243篇
  2004年   238篇
  2003年   234篇
  2002年   172篇
  2001年   146篇
  2000年   136篇
  1999年   97篇
  1998年   109篇
  1997年   79篇
  1996年   80篇
  1995年   104篇
  1994年   61篇
  1993年   46篇
  1992年   78篇
  1991年   49篇
  1990年   71篇
  1989年   60篇
  1988年   78篇
  1987年   58篇
  1986年   66篇
  1985年   102篇
  1984年   116篇
  1983年   70篇
  1982年   65篇
  1981年   79篇
  1980年   85篇
  1979年   58篇
  1978年   65篇
  1977年   72篇
  1976年   68篇
  1975年   55篇
  1974年   50篇
  1973年   44篇
排序方式: 共有8236条查询结果,搜索用时 15 毫秒
61.
The method similar to that of determining the asymmetric componentf 1 of electron distribution function was used to prove whether the nitrogen ions produced in discharge may be the very particles which directly influence magnesium nitridation in glow discharge. The amounts of created magnesium nitride on surfaces facing the anode and the cathode, and positive ion current to the plane double-probe were measured. It follows from experimental results that positive ions from bulk plasma are not decisive for nitride formation.The authors would like to thank Dr. V.Krejí and Dr. K.Maek for helpful discussions and critical notices.  相似文献   
62.
This study aimed to determine the use of selected vegetables (pumpkin, cauliflower, broccoli, carrot) as carriers of potassium iodide (KI) and potassium iodate (KIO3) by determining changes in iodine content under various conditions of impregnation as the degree of hydration, impregnated sample temperature, and impregnation time. The influence of these conditions on iodine contents in vegetables after their fortification and storage (21 °C/230 days) was analyzed. The results showed that all selected vegetables could be efficient iodine carriers. However, the conditions of the impregnation process are crucial for fortification efficiency, particularly the degree of hydration and the temperature of the impregnated samples before drying. The results showed that the lowest iodine content was in samples fortified at 4 °C and 1:4 hydration. On the other hand, the highest reproducibility of iodine was for the following fortification conditions: temperature of −76 °C and hydration of 1:1. The studies confirmed the higher stability of iodine in KIO3 form compared to KI. To increase recovery of the introduced iodine in the product after drying, using the conditioning step at 4 °C is not recommended. We recommend freezing vegetables immediately after the impregnation process  相似文献   
63.
The aim of the work has been to develop freeze-dried fruit snacks in the form of bars with the use of by-products derived from fruit processing. In effect 14 product designs of fruit gels based on: apple pulp, apple juice, water, sodium alginate and only apple or only chokeberry pomace were prepared. The snacks were freeze-dried. The dry matter content, water activity, structure, colour, mechanical properties, as well as organoleptic evaluation were determined. Freeze-dried bares were obtained according to sustainability production which in this case was relied on application of fruit pomace. The freeze-drying process ensures the microbiological safety of the product without the need to use chemical preservatives. Freeze-dried samples obtained low water activity in the range of 0.099–0.159. The increase in pomace concentration (3–9%) boosted the dry matter content to above 98%, and decreased the brightness of the freeze-dried bars about 6 to 10 units. Mechanical properties varied depending on the product design. With the increase in the amount of pomace, the shear force increased at 23% to 41%. Based on the results, the best variant, that has the most delicate structure and the best organoleptic properties, has proven to contain 1% sodium alginate and 2% pomace.  相似文献   
64.
Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9–97.1% for leaves and 51.7–95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4–26.3 ng g−1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.  相似文献   
65.
A new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid–liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and validated using influent and effluent wastewaters. The chemometric approach based on the Taguchi method was used to optimize the main conditions of simultaneous extraction and derivatization. The recoveries of the proposed procedure ranged from 85 to 122%, and the repeatability expressed by the coefficient of variation did not exceed 8%. The method’s limits of detection were in the range of 0.4–64 ng/L, and the method’s limits of quantification ranged from 1.3 to 194 ng/L. The developed method was used to determine the presence of the tested compounds in wastewater from a municipal wastewater treatment plant located in northeastern Poland. From this sample, eight analytes were detected. Concentrations of bisphenol A of 400 ng/L in influent and 100 ng/L in effluent were recorded, whereas other bisphenols reached 67 and 50 ng/L for influent and effluent, respectively. The removal efficiency of bisphenol analogues in the tested wastewater treatment plant ranged from 7 to approximately 88%.  相似文献   
66.
Extended polymeric structures based on redox-active species are of great interest in emerging technologies related to energy conversion and storage. However, redox-active monomers tend to inhibit radical polymerisation processes and hence, increase polydispersity and reduce the average molecular weight of the resultant polymers. Here, we demonstrate that styrenic viologens, which do not undergo radical polymerisation effectively on their own, can be readily copolymerised in the presence of cucurbit[n]uril (CB[n]) macrocycles. The presented strategy relies on pre-encapsulation of the viologen monomers within the molecular cavities of the CB[n] macrocycle. Upon polymerisation, the molecular weight of the resultant polymer was found to be an order of magnitude higher and the polydispersity reduced 5-fold. The mechanism responsible for this enhancement was unveiled through comprehensive spectroscopic and electrochemical studies. A combination of solubilisation/stabilisation of reduced viologen species as well as protection of the parent viologens against reduction gives rise to the higher molar masses and reduced polydispersities. The presented study highlights the potential of CB[n]-based host–guest chemistry to control both the redox behavior of monomers as well as the kinetics of their radical polymerisation, which will open up new opportunities across myriad fields.

Extended polymeric structures based on redox-active species are of great interest in emerging technologies related to energy conversion and storage.

Polyviologens are redox-active polymers based on N-substituted bipyridinium derivatives which have emerged as promising materials for energy conversion and storage.1–5 Their physicochemical properties can be adjusted through copolymerisation of the redox-active viologen monomers.6–8 The resultant materials are stable, water soluble and exhibit fast electron transfer kinetics. Polyviologens have been commonly fabricated through step-growth polymerisation in linear and dendritic architectures,9–13 as supramolecular polymers,14–16 networks,6,17,18 and covalent organic frameworks.19,20 Alternatively, anionic/cationic or metathesis-based polymerisations are used to avoid interference of radical-stabilising monomers with the radical initiators, however, these techniques are highly water- and/or oxygen-sensitive.21,22 When free-radical polymerisation (FRP) is conducted in the presence of viologen species, its reduction can cause a depletion of active radicals and thus disruption of the polymerisation process. Despite varying solvents, comonomers and initiator loadings, the direct FRP of viologen-containing monomers remains therefore limited to molar masses of 30 kDa.23–25 Accessing higher molar masses has been possible via post-polymerisation modification,26–28 which has impacted the electrochemical properties of the resultant materials.29,30 Alternative strategies to access higher molar masses of redox-active polymers and control their polymerisation are highly desirable.Incorporation of cucurbit[n]uril (CB[n]) macrocycles have lead to a variety of functional materials through host–guest chemistry.31–34 Moreover, the redox chemistry of viologens can be modulated through complexation with CB[n].35–38 Specifically, CB[n] (n = 7, 8) can tune the redox potential of pristine viologens and efficiently sequester monoreduced viologen radical cations, avoiding precipitation in aqueous environments. Further to this, we recently demonstrated that the viologen radical cation is stabilised by −20 kcal mol−1 when encapsulated in CB[7].39Consequently, we envisioned that incorporating CB[n]s as additives prior to polymerisation could (i) overcome current limits in accessible molar masses, (ii) increase control over FRP of viologen-based monomers through encapsulation and (iii) enable separation of radical species avoiding aggregation.Here, we demonstrate a new approach to control FRP of redox-active monomers leading to high molar masses and decreased dispersity of the resultant polymers. In absence of CB[n], co-polymerisation of the N-styryl-N′-phenyl viologen monomer 12+ and N,N-dimethylacrylamide (DMAAm) only occurs at high initiator loadings (>0.5 mol%, Fig. 1a), leading to low molecular weights and high polydispersity. Using our synthetic approach, 12+ is efficiently copolymerised with DMAAm in the presence of CB[n] (n = 7, 8) macrocycles resulting in control of the polymer molar mass across a broad range, 4–500 kDa (Fig. 1b). Finally, CB[n] are successfully removed from the polymer via competitive host–guest binding and dialysis. Spectroscopic and electrochemical studies revealed that solubilisation/stabilisation of the reduced species and/or shielding of the redox-active monomers from electron transfer processes was responsible for this enhancement.Open in a separate windowFig. 1Schematic representation of the investigated polymerisation. (a) Conventional free radical polymerisation either completely fails to copolymerise redox-active monomers (low initiator loading) or delivers copolymers with limited molar masses and high dispersities (high initiator loading). (b) CB[n]-mediated protection suppresses interference of viologen monomers with radicals formed through the initiation process facilitating copolymerisation. The molar mass of the resulting copolymers is readily tunable via the amount of present CB[n] macrocycles and the CB[n] is post-synthetically removed via competitive binding to yield the final copolymer with desired molar mass. Cl counter-ions are omitted for clarity.Recent studies on symmetric aryl viologens demonstrated 2 : 2 binding modes with CB[8] and high binding constants (up to Ka ∼ 1011 M−2).40,41 Incorporation of polymerisable vinyl moieties, in combination with the relatively static structure of their CB[n] host–guest complexes, was postulated to allow polymerisation without unfavorable side reactions. The asymmetric N-styryl-N′-phenyl viologen monomer 12+ prepared for this study (Fig. S1a and S2–S13) displays a linear geometry and was predicted to bind CB[n] (n = 7, 8) in a 2 : 1 and 2 : 2 binding fashion (Fig. S1b).40,42 Binding modes between CB[n] (n = 7, 8) and 12+ were investigated through titration experiments (1H NMR and ITC) which confirmed the formation of 1·(CB[7])2 and (1)2·(CB[8])2 (see Fig. S25 and S26). 1H NMR titration of CB[7] with 12+ demonstrates encapsulation of both aryl moieties (including the vinyl group) through upfield chemical shifts of the respective signals (Fig. 2a). Similar upfield shifts were observed for CB[8] (Fig. 2c). Different para-aryl substituents (vinyl vs. hydrogen) resulted in either head-to-tail or head-to-head (1)2·(CB[8])2 dimers (Fig. S1b and S26), a previously reported phenomenon.43 Nonetheless, the reversible nature of the complex renders the vinyl group temporarily available for copolymerisation. In the presence of CB[8], 12+ yields polymer molar masses of up to 500 kDa as its complexation is more robust. ITC data confirmed binding stoichiometry, with binding constants of Ka = 2.64 × 106 M−1 for 1·(CB[7])2 and Ka = 9.02 × 1010 M−2 for (1)2·(CB[8])2 (Table S2, Fig. S29a and b).Open in a separate windowFig. 2Supramolecular complexation of 12+ and CB[n]. 1H NMR spectra of 12+ at (a) χCB[7] = 2, (b) χCB[n] = 0 and (c) χCB[8] = 1 in D2O. Cl counter-ions are omitted for clarity.The free radical copolymerisation of 12+ and DMAAm ([M] = 2 M), in the absence of CB[n], was based on optimised DMAAm homopolymerisations (Fig. S14 and S15) and full conversion was confirmed by 1H NMR spectroscopy (Table S1 and Fig. S16). 12+ was maintained at 1 mol% relative to DMAAm and by varying the radical initiator concentration molar masses of up to 30 kDa with broad dispersities (Đ = 11.4) were obtained (Fig. S17). Lower initiator concentrations (<0.25 mol%) limited polymerisation (Mn = 3.7 kDa) and size exclusion chromatography elution peaks exhibited extensive tailing, suggesting that 12+ engages in radical transfer processes.To verify our hypothesis that CB[n] macrocycles can modulate the redox behavior of 12+, FRP of 12+ and DMAAm was conducted with varying amounts of CB[n] (n = 7, 8) (Fig. 3, S18 and S20). Full conversion of all monomers including their successful incorporation into the polymer was verified via1H NMR spectroscopy and SEC (Fig. S18 and S21–S23). Using CB[7], the molar mass of the copolymers was tunable between Mn = 3.7–160 kDa (Fig. 3b and S21a). Importantly, in the presence of CB[8], a broad range of molar masses Mn = 3.7–500 kDa were accessible for 0 < χCB[8] < 1.2 (Fig. S20 and S21b). Increasing the CB[n] (n = 7, 8) concentration caused dispersity values to converge to Đ = 2.2 (χCB[8] = 1.2, χ is the ratio of CB[n] to the redox-active monomer, Fig. S20). The copolymers were purified by addition of adamantylamine (competitive binder) prior to dialysis to deliver CB[n]-free redox-active copolymers (Fig. S23).Open in a separate windowFig. 3(a) In situ copolymerisation of DMAAm with 12+ and CB[7]. (b) Molar mass and dispersity vs. amount of CB[7] in the system. Fitted curve is drawn to guide the eye. Cl counter-ions are omitted for clarity.The range of molar masses obtainable through addition of CB[n] (n = 7, 8) correlated with the measured Ka (Fig. 3b and S20). Binding of 12+ to CB[8] was stronger and therefore lower concentrations of CB[8] were required to shift the binding equilibrium and mitigate disruption of the polymerisation. Dispersity values reached a maximum at χCB[7] = 0.6 or χCB[8] = 0.3, suggesting 1+˙ is only partially encapsulated. Consequently, higher CB[n] concentrations can enable FRP with lower initiator concentrations (0.10 mol%, Fig. S19), which demonstrates the major role of complexation to modulate electron accepting properties of 12+.The redox-active monomer 12+ can engage with propagating primary radicals (P) to either be incorporated into the growing polymer chain (Pm–12+˙) or to abstract an electron deactivating it (Pm). This deactivation likely occurs through oxidative termination producing 1+˙ (energetic sink), inactive oligo- and/or polymer chains (Pm) and a proton H+, causing retardation of the overall polymerisation. Oxidative terminations have been previously observed in aqueous polymerisations of methyl methacrylate, styrenes and acrylonitriles that make use of redox initiator systems.44–47 Another example by Das et al. investigated the use of methylene blue as a retarder, with the primary radical being transferred to a methylene blue electron acceptor via oxidative termination, altogether supporting the outlined mechanism of our system (extended discussion see ESI, Section 1.4).48The process of retardation can, however, be successfully suppressed, when monomer 12+ is encapsulated within CB[n] macrocycles. Herein the formation of 1·(CB[7])2 or (1)2·(CB[8])2 results in shielding of the redox-active component of 12+ from other radicals within the system, hampering other electron transfer reactions. This inhibits termination and results in extended polymerisation processes leading to higher molar mass polymers through mitigation of radical transfer reactions. Moreover, suppressing the formation of 1+˙ through supramolecular encapsulation minimises both π and σ dimerisation of the emerging viologen radical species,39 preventing any further reactions that could impact the molar mass or polydispersity of the resulting polymers.Cyclic voltammetry (CV) and UV-Vis titration experiments were conducted to provide insight into the impact of CB[n] on the redox behavior and control over FRP of 12+. Excess of CB[n] (n = 7, 8) towards 12+ resulted in a complete suppression of electron transfer processes (Fig. S31 and S32). Initially, 12+ shows a quasi-reversible reduction wave at −0.44 V forming 1+˙ (Fig. 4a). Increasing χCB[7], this reduction peak decreases and shifts towards more negative potentials (−0.51 V, χCB[7] = 1) accompanied by the formation of 12+·(CB[7])1. A second cathodic peak emerges at −0.75 V due to the increased formation of 12+·(CB[7])2. At χCB[7] = 2, this peak shifts to −0.80 V, where it reaches maximum intensity, once 12+·(CB[7])2 is the dominating species in solution. When 2 < χCB[7] < 4, the intensity of the reduction peak decreases and the complexation equilibrium is shifted towards the bound state, complete suppression of the reduction peak occurs at χCB[7] = 4. Similarly, the oxidation wave intensity is reduced by 95% at χCB[7] = 4 causing suppression of potential oxidative radical transfer processes (Fig. 4c).Open in a separate windowFig. 4Mechanism of the CB[n]-mediated (n = 7, 8) strategy for the controlled copolymerisation of redox-active monomer 12+. (a) Cyclic voltammogram with varying amounts of CB[7]. (b) UV-Vis titration of 12+ with varying amounts of CB[7]. (c) Intensity decay of the oxidation peak at −0.27 V and change in absorption maximum of 1+˙ at 590 nm vs. χCB[7]. (d) Electron transfer processes of 12+ to generate 1+˙ and 10. (e) Reduction of 12+ resulting in precipitation of 10. (f) Stabilisation of 1+˙ through encapsulation with CB[7]. (g) Protection of 12+ from redox processes through CB[7]-mediated encapsulation.The concentration of 1+˙ can be monitored using UV-Vis (Fig. 4b and S34).49 Absorbance at 590 nm (λmax) vs. χCB[7] was plotted and the concentration of 1+˙ increases, reaching a maximum at χCB[7] = 4 (Fig. 4c). When χCB[7] > 4, a decrease in concentration of 1+˙ was observed. We postulate the following mechanism: at χCB[7] = 0, 12+ is reduced to produce high concentrations of 1+˙ that partially disproportionates to form 10, which precipitates (Fig. 4e and S34). When 0 < χCB[7] < 4, increasing amounts of green 1+˙ are stabilised through encapsulation within CB[7] suppressing disproportionation (Fig. 4c (cuvette pictures), Fig. 4f). For χCB[7] > 4, 12+ is protected from reduction through encapsulation (Fig. 4g).To further demonstrate applicability of this strategy, we chose another viologen-based monomer 22+ for copolymerisation (Fig. 5a). As opposed to 12+, CB binds predominantly to the styryl moiety of 22+ (Fig. S27 and S28).50 ITC data showed that 22+ binds CB[7] in a 1 : 1 fashion with a binding affinity of Ka = 2.32 × 106 M−1 (Fig. S30 and Table S2). Monomer 22+ was also analysed via CV and showed three reversible reduction waves at −0.91 V, −0.61 V (viologen) and 0.40 V (styrene). Similar to 12+, excess CB[7] selectively protects the molecule from redox processes, while the vinyl moiety remains accessible (Fig. 5a, S33c and d). For CB[8], only partial suppression of electron transfer processes was observed (Fig. S33e and f). We therefore chose CB[7] as an additive to increase control over FRP of 22+ (Fig. 5b). Copolymerisation of 22+ (1 mol%) and DMAAm ([M] = 2 M) at χCB[7] = 0 resulted in Mn = 28 kDa. When χCB[7] = 0.1, 0.2 or 0.3, Mn increased gradually from 124 to 230 and 313 kDa, respectively, demonstrating the potential of this strategy for FRP of redox-active monomers. Higher percentages of CB[7] led to copolymers with presumably higher molar masses causing a drastic decrease in solubility that prevented further analysis. Investigations on a broader spectrum of such copolymers, including those with higher contents of 22+ are currently ongoing.Open in a separate windowFig. 5(a) Cyclic voltammogram of viologen-containing monomer 22+ and its complexation with CB[n] (n = 7, 8) at a concentration of 1 mM using a scan rate of 10 mV s−1 in 0.1 mM NaCl solution. (b) Molar mass and dispersity of 22+-containing copolymers vs. equivalents of CB[7]. Cl counter-ions are omitted for clarity.In conclusion, we report a supramolecular strategy to induce control over the free radical polymerisation of redox-active building blocks, unlocking high molar masses and reducing polydispersity of the resulting polymers. Through the use of CB[n] macrocycles (n = 7, 8) for the copolymerisation of styrenic viologen 12+, a broad range of molar masses between 3.7–500 kDa becomes accessible. Our mechanistic investigations elucidated that the redox behavior of monomer 12+ is dominated by either CB[n]-mediated stabilisation of monoradical cationic species or protection of the encapsulated pyridinium species from reduction. In the stabilisation regime (χCB[7] < 4), 12+ is reduced to form the radical cation 1+˙, which is subsequently stabilised through CB[7] encapsulation. Upon reaching a critical concentration of CB[7] (χCB[7] > 4), the system enters a protection-dominated regime, where reduction of 12+ is suppressed and the concentration of 1+˙ diminishes. The resulting copolymers can be purified by use of a competitive binder to remove CB[n] macrocycles from the product. This strategy was successfully translated to a structurally different redox-active monomer that suffered similar limitations. We believe that the reported strategy of copolymerisation of redox-active monomers will open new avenues in the synthesis of functional materials for energy conversion and storage as well as for applications in electrochromic devices and (nano)electronics.  相似文献   
67.
At this time, the development of advanced elastic dielectric materials for use in organic devices, particularly in organic field-effect transistors, is of considerable interest to the scientific community. In the present work, flexible poly(dimethylsiloxane) (PDMS) specimens cross-linked by means of ZnCl2-bipyridine coordination with an addition of 0.001 wt. %, 0.0025 wt. %, 0.005 wt. %, 0.04 wt. %, 0.2 wt. %, and 0.4 wt. % of gold nanoparticles (AuNPs) were prepared in order to understand the effect of AuNPs on the electrical properties of the composite materials formed. The broadband dielectric spectroscopy measurements revealed one order of magnitude decrease in loss tangent, compared to the coordinated system, upon an introduction of 0.001 wt. % of AuNPs into the polymeric matrix. An introduction of AuNPs causes damping of conductivity within the low-temperature range investigated. These effects can be explained as a result of trapping the Cl counter ions by the nanoparticles. The study has shown that even a very low concentration of AuNPs (0.001 wt. %) still brings about effective trapping of Cl counter anions, therefore improving the dielectric properties of the investigated systems. The modification proposed reveals new perspectives for using AuNPs in polymers cross-linked by metal-ligand coordination systems.  相似文献   
68.
Epilobium angustifolium L. (EA) has been used as a topical agent since ancient times. There has been an increasing interest in applying EA as a raw material used topically in recent years. However, in the literature, there are not many reports on the comprehensive application of this plant to skin care and treatment. EA contains many valuable secondary metabolites, which determine antioxidant, anti-inflammatory, anti-aging, and antiproliferative activity effects. One of the most important active compounds found in EA is oenothein B (OeB), which increases the level of ROS and protects cells from oxidative damage. OeB also influences wound healing and reduces inflammation by strongly inhibiting hyaluronidase enzymes and inhibiting COX-1 and COX-2 cyclooxygenases. Other compounds that play a key role in the context of application to the skin are flavonoids, which inhibit collagenase and hyaluronidase enzymes, showing anti-aging and anti-inflammatory properties. While terpenes in EA play an important role in fighting bacterial skin infections, causing, among other things cell membrane, permeability increase as well as the modification of the lipid profiles and the alteration of the adhesion of the pathogen to the animal cells. The available scientific information on the biological potential of natural compounds can be the basis for the wider use of EA in skin care and treatment. The aim of the article is to review the existing literature on the dermocosmetic use of E. angustifolium.  相似文献   
69.
The core of Cyclolinopeptide A (CLA, cyclo(LIILVPPFF)), responsible for its high immunosuppressive activity, contains a Pro-Pro-Phe-Phe sequence. A newly synthesized cyclic tetrapeptide, cyclo(Pro-Pro-β3-HoPhe-Phe) (denoted as 4B8M) bearing the active sequence of CLA, was recently shown to exhibit a wide array of anti-inflammatory properties in mouse models. In this investigation, we demonstrate that the peptide significantly inhibits the replication of human adenovirus C serotype 5 (HAdV-5) and Herpes simplex virus type-1 (HSV-1) in epithelial lung cell line A-549, applying Cidofovir and Acyclovir as reference drugs. Based on a previously established mechanism of its action, we propose that the peptide may inhibit virus replication by the induction of PGE2 acting via EP2/EP4 receptors in epithelial cells. In summary, we reveal a new, antiviral property of this anti-inflammatory peptide.  相似文献   
70.
In these studies, we investigated the antioxidant activity of three ruthenium cyclopentadienyl complexes bearing different imidato ligands: (η5-cyclopentadienyl)Ru(CO)2-N-methoxysuccinimidato (1), (η5-cyclopentadienyl)Ru(CO)2-N-ethoxysuccinimidato (2), and (η5-cyclopentadienyl)Ru(CO)2-N-phthalimidato (3). We studied the effects of ruthenium complexes 1–3 at a low concentration of 50 µM on the viability and the cell cycle of peripheral blood mononuclear cells (PBMCs) and HL-60 leukemic cells exposed to oxidative stress induced by hydrogen peroxide (H2O2). Moreover, we examined the influence of these complexes on DNA oxidative damage, the level of reactive oxygen species (ROS), and superoxide dismutase (SOD) activity. We have observed that ruthenium complexes 1–3 increase the viability of both normal and cancer cells decreased by H2O2 and also alter the HL-60 cell cycle arrested by H2O2 in the sub-G1 phase. In addition, we have shown that ruthenium complexes reduce the levels of ROS and oxidative DNA damage in both cell types. They also restore SOD activity reduced by H2O2. Our results indicate that ruthenium complexes 1–3 bearing succinimidato and phthalimidato ligands have antioxidant activity without cytotoxic effect at low concentrations. For this reason, the ruthenium complexes studied by us should be considered interesting molecules with clinical potential that require further detailed research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号