首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
化学   51篇
力学   3篇
数学   4篇
物理学   12篇
  2024年   2篇
  2023年   2篇
  2022年   10篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
31.
JPC – Journal of Planar Chromatography – Modern TLC - A simple, accurate, precise, and specific high-performance thin-layer chromatography (HPTLC) method for the quantitative...  相似文献   
32.
The effects of material, geometry, length and position of the porous channels on energy transfer in air-filled enclosures carrying a compressible pulsating wave are investigated. The pulsating fluid motion is created by an acoustic driver in a resonant chamber. Three different porous materials (Corning Celcor, Reticulated Vitreous Carbon (RVC), and Mylar plastic), three different geometries (square, open foam, and circular cross-section), six different lengths, “L” (varying between 1 and 6.5 cm, L = 0.01–0.068 λ, where λ is the wavelength of the fundamental acoustic mode), and eight different positions (hot end of the channel, varying between 0.5 and 8 cm) of the channels from the pressure anti-node is experimentally measured. The surface temperature distribution on the channel wall and temperature difference generated across the channel walls are measured while energy flow along the channel walls is calculated analytically. The experimental results are compared with a 1-D numerical code and found excellent agreement. The material, geometry, length, and position of the porous channel strongly affect the energy interactions between the porous channel and the working fluid. The temperature difference generated across the porous RVC channel increases as the porosity increases form 20 to 80 PPI; but decreases if the porosity increases further. Corning Celcor shows improved temperature difference generated across the channel as the length of the channel increases; but then decreases if the length is further increased. The results of this study are applicable to the design of thermoacoustic devices.  相似文献   
33.

In today’s era, a fascinating discipline is immensely influencing a wide miscellany in different fields of science and technology known as quantum cryptography. The amalgamation of different unconventional themes of information security and fast computing have appended inventiveness and creativity into the performance of quantum systems which exhibits astonishing outcomes surprisingly for the most complicated nonlinear models. The exploitation of chaos theory at quantum scale is a dynamical new approach towards the system of information security. Regarding this a novel image encryption approach based on modern standards of chaos, fast computing and quantum encryption has been proposed in this article. In the designed scheme, Walsh transformation is exploited to get standard image compression as to reduce data being processed resulting in fast computing. Quantum spinning and rotation operators leading new protocols, compressed data is encrypted using quantum spinning and rotation operators. For adding more confusion capability in contemplated algorithm discrete fractional chaotic Lorenz system is also accomplished. The proposed system has been validated through statistical analysis, the assessments accordingly by statistical analysis tests clearly emphasis that proposed scheme of encryption is comparatively equitable for the digital images security.

  相似文献   
34.
35.
36.
Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a–o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.  相似文献   
37.
NIMA-related kinase7 (NEK7) plays a multifunctional role in cell division and NLRP3 inflammasone activation. A typical expression or any mutation in the genetic makeup of NEK7 leads to the development of cancer malignancies and fatal inflammatory disease, i.e., breast cancer, non-small cell lung cancer, gout, rheumatoid arthritis, and liver cirrhosis. Therefore, NEK7 is a promising target for drug development against various cancer malignancies. The combination of drug repurposing and structure-based virtual screening of large libraries of compounds has dramatically improved the development of anticancer drugs. The current study focused on the virtual screening of 1200 benzene sulphonamide derivatives retrieved from the PubChem database by selecting and docking validation of the crystal structure of NEK7 protein (PDB ID: 2WQN). The compounds library was subjected to virtual screening using Auto Dock Vina. The binding energies of screened compounds were compared to standard Dabrafenib. In particular, compound 762 exhibited excellent binding energy of −42.67 kJ/mol, better than Dabrafenib (−33.89 kJ/mol). Selected drug candidates showed a reactive profile that was comparable to standard Dabrafenib. To characterize the stability of protein–ligand complexes, molecular dynamic simulations were performed, providing insight into the molecular interactions. The NEK7–Dabrafenib complex showed stability throughout the simulated trajectory. In addition, binding affinities, pIC50, and ADMET profiles of drug candidates were predicted using deep learning models. Deep learning models predicted the binding affinity of compound 762 best among all derivatives, which supports the findings of virtual screening. These findings suggest that top hits can serve as potential inhibitors of NEK7. Moreover, it is recommended to explore the inhibitory potential of identified hits compounds through in-vitro and in-vivo approaches.  相似文献   
38.
15-deoxy-??12,14-Prostaglandin J2 (15d-PGJ2) is a biologically active molecule serving as a pro-adipogenic factor or an anti-inflammatory regulator. This compound is one of naturally occurring derivatives formed by the non-enzymatic dehydration of PGD2. To determine the endogenous synthesis of 15d-PGJ2, a convenient immunological approach is useful. At first, we established a cloned hybridoma cell line to secrete a monoclonal antibody specific for 15d-PGJ2. For the development of a solid-phase enzyme-linked immunosorbent assay (ELISA), the immobilized antigen using a protein conjugate of 15d-PGJ2 was allowed to react competitively with a monoclonal antibody in the presence of free 15d-PGJ2. Under the optimized conditions, a sensitive calibration curve was generated able to determine the amount of 15d-PGJ2 from 0.5?pg to 9.7?ng with 71?pg of 50% displacement in one assay. Our monoclonal antibody did not recognize other related prostanoids except PGJ2 with cross-reaction of 4%. Our ELISA was demonstrated to be reliable for the quantification of 15d-PGJ2 in the maturation medium of cultured adipocytes by confirming the accuracy and specificity of its determination. The application of our assay revealed that the non-enzymatic formation of 15d-PGJ2 became more evident after several hours of incubation with authentic PGD2 at 37?°C. The results indicate the usefulness of our developed solid-phase ELISA with the monoclonal antibody for further studies on the endogenous synthesis of 15d-PGJ2 and its roles in various cells and tissues.  相似文献   
39.
40.
Phosphomolybdate, H3PMo12O40, (PMo12)-doped-poly(3,4-ethylenedioxythiophene) (PEDOT) coated gold nanoparticles have been synthesized in aqueous solution by reduction of AuCl4 using hydroxymethyl EDOT as a reducing agent in the presence of polystyrene sulfonate and PMo12. The resulting PMo12-doped-PEDOT stabilized Au nanoparticles are water soluble and have been characterized by UV–visible spectroscopy, scanning electron microscopy and electrochemistry. Glassy carbon electrodes modified with these Au nanoparticles show excellent stability and catalytic activity towards the reduction of bromate in an aqueous electrolyte solution containing 10 mM H2SO4 and 0.1 M Na2SO4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号